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The flow of elements through biological communities fuels all 
ecosystems on Earth, and humans are increasingly threaten-
ing biodiversity and the persistence of these fluxes1,2. Coral 

reefs are a prime example of an ecosystem that is severely impacted 
by anthropogenic activities, and drastic declines in habitat quality 
and fish biomass have evoked serious concerns about the persistence 
of coral reefs3,4. Maintaining ecosystem functions, defined as fluxes 
of elements, is a major goal for coral reef conservation5–7. However, 
past evaluations of functions on coral reefs have mostly relied on 
static proxies such as live coral cover, standing stock biomass of 
reef fishes or measures of diversity8–10. These simplified proxies, 
although useful, may not properly represent ecological functions 
because fluxes of elements can scale nonlinearly with variables such 
as biomass11. Therefore, improving the quantification of ecological 

functions constitutes an important step towards the efficient man-
agement of coral reef ecosystem functioning7.

As a dominant group of consumers, coral reef fishes are essen-
tial vectors of carbon (C), nitrogen (N) and phosphorus (P)11–13. 
Ecosystem functions mediated by coral reef fishes include nutrient 
cycling, biomass production, herbivory and piscivory (secondary 
consumption)7. Although the high diversity of coral reef fishes has 
inspired many studies that focus on ecosystem functioning, only a 
handful of studies have attempted to quantify functions as continuous 
fluxes7. Furthermore, studies that have quantified functions as a flow 
of energy and nutrients have mostly focused on single functions (for 
example, biomass production14,15 or fish excretion13), covering only 
a small number of species at local scales. Consequently, trade-offs 
among multiple functions, their drivers and their vulnerability  
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Human impact increasingly alters global ecosystems, often reducing biodiversity and disrupting the provision of essential eco-
system services to humanity. Therefore, preserving ecosystem functioning is a critical challenge of the twenty-first century. 
Coral reefs are declining worldwide due to the pervasive effects of climate change and intensive fishing, and although research 
on coral reef ecosystem functioning has gained momentum, most studies rely on simplified proxies, such as fish biomass. 
This lack of quantitative assessments of multiple process-based ecosystem functions hinders local and regional conservation 
efforts. Here we combine global coral reef fish community surveys and bioenergetic models to quantify five key ecosystem func-
tions mediated by coral reef fishes. We show that functions exhibit critical trade-offs driven by varying community structures, 
such that no community can maximize all functions. Furthermore, functions are locally dominated by few species, but the iden-
tity of dominant species substantially varies at the global scale. In fact, half of the 1,110 species in our dataset are functionally 
dominant in at least one location. Our results reinforce the need for a nuanced, locally tailored approach to coral reef conserva-
tion that considers multiple ecological functions beyond the effect of standing stock biomass.
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Fig. 1 | Maps of the five key ecosystem functions, multifunctionality and the relationships between the functions and biomass. Left: dots indicate 
localities of field surveys, with dot sizes representing the ranked values of the locality-level predictions of functions, and colour scales showing 
categorical assignments (black, ≤25%; grey, 25–75%; colour, ≥75%). Black outlines highlight the five localities with the highest values of each function. 
Multifunctionality represents the geometric mean of the five normalized functions. Right: the back-transformed predicted values for functions and 
multifunctionality with increasing biomass. The lines represent the average modelled relationship, and the shaded areas show the 95% CIs of the 
predictions. All relationships between functions and biomass are nonlinear.
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to anthropogenic stressors remain poorly understood in coral reef 
ecosystems across large spatial scales7.

In this Article, we integrate biogeochemistry and commu-
nity ecology to advance understanding of the elemental fluxes 
that underpin reef fish functioning. Using empirical species- 
specific data on basic organismal processes and extrapolation with 
Bayesian phylogenetic models, we parameterize individual-level 
bioenergetic models to estimate five key ecosystem functions 
for 1,100 species: N excretion, P excretion, biomass production, 
herbivory and piscivory. We apply these bioenergetic models to 
9,118 reef fish transects across 585 sites at 98 localities (that is, 
regions encompassing sites that belong to the same biogeographic 
sub-province) worldwide (Supplementary Table 1) to (1) quan-
tify community-level reef fish functions, (2) investigate trade-offs 
among functions and (3) extract the community and species-level 
effects on these functions.

Results
We estimated five key ecosystem functions mediated by coral reef 
fishes across the globe (Fig. 1). Across localities, all five functions 
show similar geographical patterns with on average higher values 
around the Equator. However, at the global scale, no location dis-
played high levels (that is, top 5%) of functioning across all func-
tions. Therefore, multifunctionality (that is, the geometric mean 
of the five normalized functions) does not appropriately represent 
the state of all functions assessed independently. For example, 
although the northern Coral Sea had the highest multifunctionality  

value, piscivory in this location was 40% less than its global  
maximum value.

Biomass is the most commonly employed indicator of coral reef 
functioning7,8, and we demonstrate a predictably strong relationship 
between fish biomass and all five functions (Fig. 1). Specifically, 
in a multivariate mixed-effects Bayesian model, the slopes of 
log-transformed biomass were 0.932 (95% credible interval (CI): 
0.929, 0.934) for N excretion, 1.051 (CI: 1.047, 1.056) for P excre-
tion, 0.771 (CI: 0.764, 0.780) for production, 0.940 (CI: 0.923, 0.957) 
for herbivory and 0.668 (CI: 0.635, 0.702) for piscivory. These 
slopes indicate that the relationships between biomass and func-
tions are all allometric, which demonstrates that biomass is not an 
appropriate proxy for functioning. We also incorporated sea sur-
face temperature (SST) due to its impact on the metabolism and 
growth of individual fishes, which scales up to the community16. 
We found positive effects of SST on N excretion, production and  
herbivory but no effects of SST on P excretion and piscivory 
(Supplementary Table 3).

Our multivariate model also allowed us to estimate the correla-
tions among functions, independent of the effects of biomass and 
SST. In particular, we estimated correlations among functions on 
three levels: locality effects, site effects and residual variation (Fig. 2 
and Extended Data Figs. 1 and 2). The correlations displayed simi-
lar patterns on each level. We found negative trade-offs between P 
excretion and N excretion as well as between P excretion and bio-
mass production. Furthermore, we found slightly weaker negative 
correlations between piscivory and N excretion as well as between 
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Fig. 2 | Correlations of the five functions, accounting for biomass and SSt. a, Modelled correlation coefficients of residual errors. Dots represent the 
average, and the 95% CI is too narrow to be shown. b–k, Scatter plots of the mean residual errors of the functions of P excretion (Pex) (b), production 
(Prod) (c), herbivory (Herb) (d) and piscivory (Pisc) (e) as a function of N excretion (Nex); production (f), herbivory (g) and piscivory (h) as a function of 
P excretion; herbivory (i) and piscivory (j) as a function of production; and piscivory as a function of herbivory (k).
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piscivory and herbivory. Thus, a reef fish community cannot  
simultaneously display high values of functioning across all inves-
tigated functions.

To determine how community structure affects the variation and 
trade-offs of functions beyond the effects of biomass and SST, we ran 
a multivariate Bayesian mixed-effects model with ten variables that 
describe the structure of each fish assemblage: species richness and 
the median, lower and upper 95% quantiles of size, immaturity (that 
is, a measure combining relative size and growth rate; Methods) and 
trophic level of individuals in a community. Each of these variables 
has non-zero effects on at least one of the five functions, suggesting 
that the observed trade-offs may be, at least in part, rooted in the 
structure of the focal community (Fig. 3 and Supplementary Table 
4). Some associations, such as the negative and positive effects of 
trophic level on herbivory and piscivory, respectively, are intuitive, 
whereas others, such as the negative effect of immaturity on P excre-
tion, are not immediately obvious (Fig. 3).

Beyond community structure, we examined whether functions 
are driven by particular species across sites. We quantified the 
degree of functional dominance (that is, disproportionately large 
contributions by species to a given function) inside each commu-
nity at the site level and found that, on average, functions are domi-
nated by a small fraction of species in each community (Fig. 4a).  
We also calculated the proportion of species that is dominant 

in at least one site (that is, species with a disproportionately high 
contribution as compared with a community in which all species 
contribute equally), and we found that 49% of all species contrib-
uted disproportionately to a function in at least one surveyed site  
(Fig. 4b). However, very few species are dominant throughout their 
range (Fig. 4c). Thus, functions within communities tend to be 
driven by few dominant species, but the identity of those dominant 
species varies across sites.

Discussion
By quantifying five key processes mediated by coral reef fishes, we 
demonstrate that coral reef ecosystem functioning is shaped by bio-
logical trade-offs, local community structure and species identity. 
Standing biomass is one of the most commonly employed indica-
tors of coral reef functioning7,8, and our analyses confirm the strong 
influence of biomass on all other processes. However, our results 
also show nonlinear relationships between functions and biomass 
and illustrate a high degree of residual variation, unexplained by 
biomass. This suggests that biomass alone does not sufficiently 
characterize functioning; indeed, strong trade-offs occurred among 
the five functions independent of biomass. Thus, using biomass 
as a proxy may mask differences in community-level function-
ing. Furthermore, for a given value of biomass, no reef can yield 
above-average values across all five functions. Although a reef may 
stand out as a hotspot for one function, no reef can simultaneously 
maximize all functions.

The observed trade-offs among functions are driven by fish  
community structure and the organismal physiology and 
life-history traits of its constituents17,18. For example, we observed a 
clear trade-off between P excretion and biomass production, which 
is mostly driven by community age and trophic structure (Fig. 3). 
Communities dominated by fishes with high trophic levels are char-
acterized by high P excretion rates because predatory fishes have a 
P-rich diet13. In contrast, biomass production is high in commu-
nities dominated by fishes that occupy low trophic levels because 
herbivores tend to exhibit higher growth rates19. Moreover, P is 
retained for skeletal growth in young fishes, thus limiting P excre-
tion rates17,20. Metabolic theory predicts that small-bodied individu-
als have higher mass-specific metabolic rates, leading to elevated 
consumption rates and disproportionate contributions to functions 
that rely on rapid energetic turnover, such as herbivory, piscivory, 
production and N excretion15,21,22.

Our results reveal that functions consistently rely on a few domi-
nant species, but the identities of local, dominant species strongly 
vary across sites23. Locally, a small number of high-performing taxa 
may disproportionately impact rates of functioning at the com-
munity level due to high biomass or abundance24, which may have 
led to their designation as functionally dominant ‘key species’ in 
various locations25. However, our results also reveal that no species 
dominated throughout its geographical range, and half of all spe-
cies contributed disproportionately to a specific function in at least 
one site. Thus, it is not possible to pinpoint widespread key spe-
cies that dominate functioning throughout their range and can be 
placed at the centre of conservation guidelines; rather, identifying 
local species dominance across functions may be the best approach  
for small-scale conservation efforts, and the preservation of 
regional reef fish biodiversity should be prioritized based on broad- 
scale policy.

Our global analysis of multiple functions suggests pathways by 
which human-induced shifts in reef fish community structure may 
impact coral reef ecosystems. Fishing and climate-induced coral 
loss have caused declines in reef fish biomass and shifts in commu-
nity structure26,27, and we suggest that these changes will differen-
tially affect ecosystem functioning. Intensive fishing and associated 
reductions in the biomass of large fishes, for example, alters the size, 
age and trophic structure of fish communities27. When accounting 
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Fig. 3 | Effects of ecological community variables on the five functions. 
Dots indicate fixed effect values from Bayesian linear regressions that 
examine the effects of species richness, trophic level, size and immaturity 
of fishes. To represent both the median and spread of trophic level, size 
and immaturity across individuals within a community, we included 
lower and upper 95% quantile values of these three traits as community 
variables. All data were log transformed and standardized to compare 
across functions and variables (see Supplementary Table 4 for parameter 
values on non-standardized data). Dots represent the average effect size 
estimate, and horizontal lines indicate the 95% CI. Immaturity is defined as 
the derivative of the von Bertalanffy growth model for a given size; thus, the 
higher the value, the younger the individual.
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for the effect of biomass, these community shifts can enhance N 
excretion and production15, but they will negatively impact P excre-
tion, herbivory and piscivory. Furthermore, declines in coral cover 
related to climate change and warming seas are often associated 
with shifts towards herbivores28,29. Herbivores generally contribute 
little to P excretion13,17, so a shift to herbivore dominance and the 
subsequent decline of community-level P excretion may change the 
balance of nutrient cycling on coral reefs, potentially favouring algal 
growth over corals30.

Sustaining biomass, diversity and ecosystem functioning are 
central objectives of most conservation initiatives8. Although 
safeguarding fish biomass enhances functioning, the trade-offs 
among key functions reveal a critical challenge for coral reef con-
servation, where actions to enhance one function may negatively 
impact another. For example, the establishment of marine pro-
tected areas, which are one of the primary conservation strategies 
for coral reefs31, may protect herbivorous species. However, marine 
protected areas do not protect reefs from the pervasive effects of 
climate change31, and community shifts towards herbivore domina-
tion may result in the decline of P excretion. Thus, measuring con-
servation success with biomass or solely one function (for example, 
herbivory) can mask the collapse of other essential functions. It is 
necessary to gauge the state of reef ecosystems based on multiple, 
complementary, process-based functions. However, understand-
ing of process-based functioning or the definition of a ‘functional’ 
coral reef are still lacking7. Establishing functional baselines for 
global coral reefs is a critical challenge for future studies. Until then, 
our results suggest that coral reef fish functions can be managed 
by enhancing standing stock biomass, protecting local key species 
and vulnerable constituents of the community (for example, large 
carnivores) and promoting regional biodiversity.

We demonstrate that the variability in processes that govern ele-
mental cycling in complex ecosystems, such as tropical coral reefs, 
represents an unrecognized challenge for protecting ecosystem 
functioning. Management strategies that call for the enhancement 
of ecosystem functioning via an economic mindset (that is, where 

higher functioning is better) are not feasible. Instead, conserv-
ing coral reef ecosystem functioning will require a more nuanced 
approach that considers processes that vary beyond the effect of 
standing stock biomass and are subject to local trade-offs, drivers 
and anthropogenic threats.

Methods
Underwater visual census database. We used a published global database of 
reef fish abundances and sizes collected along belt transects16. This database 
encompasses 9,118 transects across 585 sites (within 98 localities) in the central 
Indo-Pacific, central Pacific, eastern Pacific, western Indian, eastern Atlantic 
and western Atlantic oceans. Sites are defined as small islands or stretches of 
continuous reefs in larger coastlines, and localities encompass sites that belong to 
the same biogeographic sub-provinces16. The database only includes transects on 
the outer reef slope and with a hard reef bottom. Transects were carried out at a 
constant depth, parallel to the reef crest. We discarded the species inside families 
for which we did not have body stoichiometry data, individuals that were smaller 
than 7 cm (to minimize the bias related to the identification of small individuals) 
and rare species for which fewer than 20 individuals were recorded across all 
transects. The dataset then included 1,110 species belonging to 25 families 
(Acanthuridae, Balistidae, Bothidae, Chaetodontidae, Cirrhitidae, Fistulariidae, 
Haemulidae, Holocentridae, Kyphosidae, Labridae, Lethrinidae, Lutjanidae, 
Monacanthidae, Mugilidae, Mullidae, Ostraciidae, Pempheridae, Pomacanthidae, 
Pomacentridae, Sciaenidae, Scorpaenidae, Serranidae, Siganidae, Tetraodontidae 
and Zanclidae). SST for each site was obtained from daily time‐series data from 
the National Oceanic and Atmospheric Administration covering a five‐year period 
(°C, 0.25° resolution)32 (available from https://psl.noaa.gov/data/gridded/tables/
sst.html). Furthermore, for each transect, we calculated species richness and 
estimated total standing stock biomass of fishes by using Bayesian length–weight 
relationships available from FishBase33,34. All data processing and analyses were 
performed in the software program R (version 4.0.2, R Core Team 2020).

Quantification of functions. For each transect, we estimated five key 
process-based functions mediated by fishes: N excretion rate (gN m−2 d−1), P 
excretion rate (gP m−2 d−1), production of biomass through growth (gC m−2 d−1), 
herbivory (that is, ingestion rate of macrophytes (gC m−2 d−1)) and piscivory (that 
is, ingestion rate of fishes (gC m−2 d−1))7. These five functions were estimated for 
each transect using individual-based bioenergetic models predicting fluxes of C, 
N and P (for example, daily C intake rates, N and P excretion rates and growth 
rates)17. This bioenergetic model framework integrates elements of metabolic 
theory, stoichiometry and flexible elemental limitation17. We estimated the 
input parameters, including elements of metabolism, growth and diet and body 
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Fig. 4 | Local dominance in species contributions to five ecosystem functions on coral reefs. a, The degree of dominance for each function at the site 
level. The degree of dominance of a community ranges between zero (all species contribute equally to the function) and one (a single species is the 
sole contributor to a given function). Coloured dots represent the raw values, and the black dots and lines display the mean and 95% CIs of degree of 
dominance among all sites. In some cases, the CI is too small to be visible. The vertical dashed line shows the average degree of dominance of 1,000 
randomly simulated communities. b, Bar plot of the proportion of species that are dominant in at least one site relative to the total number of species 
or, for herbivory and piscivory, the total number of herbivores and piscivores, respectively. c, Species-specific frequencies of dominance in each function 
across all sites, ranging from zero (species are never dominant) to one (dominant wherever present). The black dots and lines display the mean and 95% 
CIs of the frequency of dominance among species. A species is categorized as dominant in a community if its contribution to a function is higher than a 
scenario in which all species are equal (that is, one divided by the number of species that contribute to the function).

NAtuRE ECOLOGY & EVOLutiON | VOL 6 | JUNE 2022 | 701–708 | www.nature.com/natecolevol 705

https://psl.noaa.gov/data/gridded/tables/sst.html
https://psl.noaa.gov/data/gridded/tables/sst.html
http://www.nature.com/natecolevol


Articles NaTurE ECOlOgy & EvOluTION

stoichiometry, for all 1,110 species through the integration of empirical data,  
data synthesis and extrapolation based on Bayesian phylogenetic  
models (Supplementary Methods). We then ran a unique bioenergetic model  
for each combination of species identity, body size and SST (n = 30,668) to  
obtain the contribution of each individual to each function in each transect. 
Finally, we summarized functions at the community level by summing up all 
individual contributions inside a transect and dividing the sum by the surface area. 
Each function is, thus, expressed as dry mass (of C, N or P) per day per square 
metre. We note that N excretion, P excretion and biomass production include 
contributions of all fishes, whereas herbivory and piscivory are carried out by a 
subset of the community, with respect to their trophic guild as defined  
by ref. 35. To reduce the occurrence of misclassification of herbivores and  
piscivores, we categorized a species as herbivorous or piscivorous if it had both 
the highest probability to be classified in that trophic group and this probability 
was more than 0.5, based on the probability scores of trophic guilds presented by 
Parravicini et al.35. Furthermore, as a comparison, we estimated herbivory and 
piscivory rates using two alternative trophic guild classifications based on expert 
opinion9,35. Both the herbivory and piscivory rates match the expert opinion 
trophic guild classifications. Finally, we estimated multifunctionality—that is, one 
measure that combines all five functions by taking the geometric average of the five 
functions (normalized to a range between 0 and 100). We used the geometric mean 
because functions are dependent on each other and vary by several orders  
of magnitude.

Community structure variables. We quantified a set of variables that characterize 
fish community structure. These variables describe the size, age and trophic 
distribution of the community, as these may all affect functions17. Specifically, 
we calculated the 2.5%, 50% and 97.5% quantiles of the total length, immaturity 
and trophic level of all individuals per transect. We included the 2.5% and 97.5% 
quantiles to account for the spread of these traits within communities while 
avoiding the effect of outliers. The total length is based on visual estimations by 
divers. The immaturity is quantified using the following formula:

Immaturityi = κ (l∞ − li) ,

where κ is the species-specific growth rate parameter, l∞ is the species-specific 
asymptotic adult length and li is the total length of individual i. Essentially, this is 
the derivative of the von Bertalanffy growth model for a certain length, and the 
higher this value is, the younger the individual. Finally, trophic level was extracted 
from FishBase34.

Multivariate regression models. We fitted three multivariate Bayesian  
models with all five functions to: (1) predict functions on the locality level to  
create a map of functions, (2) investigate the effects of biomass and SST as  
well as the correlations among functions independent of biomass and SST  
and (3) estimate the effects of the community structure on each function.  
For each model, functions were log-transformed to ensure the normal distribution 
of residuals and an allometric relationship with biomass, which is hypothesized  
by metabolic theory36. In the underwater visual transect database, 291 transects 
(3%) did not contain herbivores and 4,467 transects (49%) did not contain 
piscivores, yielding zeros for herbivory and piscivory, respectively. We considered 
that these absences of herbivores or piscivores are likely an underestimation  
of their actual abundance at the surveyed reef site, as all reefs typically host a  
few herbivores and piscivores (that is, they are likely false zeros). To avoid 
removing all transects with missing values for herbivory or piscivory (n = 4,620) 
from our database when running multivariate analyses, we imputed these  
zeros as missing values, and they were eventually set as parameters in the 
multivariate models.

First, we performed a multivariate intercept-only regression model with the 
five log-transformed functions to estimate the functions per locality. The model 
structure includes random effects for localities and sites:
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where i is the index of the transect, μ represents the average prediction per 
function, yEN ,i is the N excretion rate of transect i, yEP ,i is the P excretion rate, 
yB,i is the biomass production rate, yH,i is the herbivory rate, yEN, i is the piscivory 
rate, σ represents the residual error of each function (EN, EP, B, H and P), R is 
the correlation matrix of the residuals, β0 is the intercept for each function, 
and δfunction,loc and δfunction,site represent the random effects of locality and sites, 
respectively. Locality-level and site-level effects are also structured including 
covariation among functions. There are, thus, three correlation matrices in total, 
meaning that the model will estimate the correlation among functions on three 
levels: locality, site and transect.

We used non-centred parameterization for site and location effects and all 
standard deviations had the following prior: σ ≈ student (3, 0, 2.5). We used 
a prior (lkjcorr, where lkj is Lewandowski–Kurowicka–Joe) for each of the three 
correlation matrices (R ≈ lkjcorr (1)).

Second, we ran a mixed-effect model to investigate the effects of biomass 
and SST on all functions and the correlations among functions (independent of 
biomass and SST). The standing stock biomass of communities is positively related 
to all functions because of the additive nature of the quantification and metabolic 
theory36. Furthermore, because of the known relationship between temperature 
and parameters related to growth and respiration (Supplementary Methods), 
functions are expected to be affected by temperature. We thus fitted a multivariate 
Bayesian mixed-effect model using transect-level, log-transformed functions that 
included random effects for sites and localities:
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μH,i = (β0H + δH,loc + δH,site) + β1Hlog (biomass) , i + β2HSST,i

μP,i = (β0P + δP,loc + δP,site) + β1Plog (biomass) , i + β2PSST,i

where β1EN , β1EP , β1B, β1H, β1P are the fixed effects of the log-transformed 
biomass and β2EN , β2EP , β2B, β2H, β2P are the fixed effects of SST. Locality-level 
and site-level effects are, thus, structured including covariation among functions, 
independent of biomass and SST. Similarly, the residual variation of functions 
incorporates the correlations between functions, without the effect of biomass and 
SST. We used similar priors as described above, and we used weakly informative 
normal priors for the model slopes ( β1 ≈ normal (1, 1), β2 ≈ normal (0, 1)).

Finally, to investigate the effect of community structure while still accounting 
for the effects of standing biomass and SST, we fitted a mixed-effect multivariate 
model similar to the model specified above, but we added all community structure 
variables:

μfunction,i = β0function + β1functionlog (biomass) , i + β2functionSST, i

+β3functionrichness, i + β4functionsizem, i + β5functionsize2.5%, i

+β6functionsize97.5%, i + β7functiontrophm, i + β8functiontroph2.5%, i

+β9functiontroph97.5%, i + β10functionImm, i + β11functionIm2.5%, i

+β12functionIm97.5%, i
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where richness is the species richness, size is the total length, troph is the 
trophic level, Im is the immaturity and m, 2.5% and 97.5% represent the 50%, 
2.5% and 97.5% quantiles across the fish community, respectively. For these 
models, we used weakly informative priors for the fixed effect parameters 
( β3 − β12 ≈ normal (0, 1)) and the same priors as described above for  
other parameters.

All Bayesian models were fitted using the R package brms37, which uses Stan, 
a C++ package to perform full Bayesian inference38. The posterior distributions 
of model parameters were estimated using Hamiltonian Monte Carlo methods by 
using four chains of 2,000 samples, including 1,000 samples as a warm‐up. Thus, a 
total of 4,000 draws were used to estimate posterior distributions. The convergence 
and fit of the models were verified by examining the Rhat, parameter trace plots 
and posterior prediction plots (Extended Data Fig. 2).

Species dominance and contributions to functions. We estimated the relative 
contribution of each species to each function for all sites as follows:

Contributionf,i,j =
Ff,i,j
∑F

f,j
,

where i is a certain species, j is a site and F is the value of function f.
Then, we quantified the degree of species dominance per function for each 

site. We first ranked species according to their contribution to function, and then 
we quantified the cumulative contributions of species to functions. Finally, we 
used the area under the species accumulation curve as a measure for the degree of 
dominance (DD). Specifically, the DD for a function performed by R species was 
calculated as follows:

DD =
A − Amin

Amax − Amin
,

where A is the area under the curve, Amin is the theoretical area under the curve 
where each species has an equal contribution to a certain function and Amax is the 
theoretical area under the curve where one species performs the entire function. 
They are quantified as:

Amin =
R2

− 1
2R ,

Amax = R − 1,

A =

R
∑

i=2

Ci + Ci−1

2
,

where Ci is the contribution of a certain species and R equals the species richness in 
the case of N excretion, P excretion and production. For herbivory and piscivory, 
R represents the number of herbivores and piscivores, respectively. The DD, thus, 
ranges between 0 and 1, where 0 means that each species contributes equally and  
1 means that a single species performs the entire function.

Finally, we quantified the frequency of dominance per species (that is, the 
number of sites in which a species is dominant for a given function divided by the 
total number of sites in which that species is observed). A species is considered 
dominant for a certain function in a given site if its contribution is higher than 1/R 
(that is, they contribute more than the situation in which each species contributes 
equally to a certain function).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data needed to reproduce the figures are available on GitHub (https://github.com/
nschiett/global_proc) and figshare (https://doi.org/10.6084/m9.figshare.13285901.
v1). All empirical data that were used to estimate parameters for bioenergetic 
modelling (Supplementary Information) will be available on figshare (https:// 
doi.org/10.6084/m9.figshare.19134446.v1) after a two-year embargo.

Code availability
All code to reproduce the figures are available on GitHub (https://github.com/
nschiett/global_proc) and figshare (https://doi.org/10.6084/m9.figshare. 
13285901.v1).
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Extended Data Fig. 1 | Correlations among functions. Correlations, independent of biomass and sea surface temperature, at the locality and site levels. 
Dotes and lines indicate the mean estimated values and 95% credible intervals, respectively.
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Extended Data Fig. 2 | Posterior predictive checks of multivariate models. a-e: Intercept-only model, f-j: model with biomass and sea surface 
temperature, k-o: model with all community variables.
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Ecological, evolutionary & environmental sciences study design
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Study description We used a combination of fish community data and bioenergetic modelling to quantify 5 key ecological functions (i.e. herbivory, 
piscivory, nitrogen cycling, phosphorous cycling and biomass production) for global coral reefs. Our study encompasses 9118 transect 
replicates across 585 sites (98 localities) in the Central Indo-Pacific, Central Pacific, Eastern Pacific, Western Indian, Eastern Atlantic, 
Western Atlantic. Our surveys are referred to 1110 reef fish species. 
For each transect we quantified the 5 functions. Then we used Bayesian modeling to identify major predictors of the ecological 
functions, to test for the existence of thresholds among functions and to assess the contribution of each species to the five 
processes.

Research sample This is a study conducted at community level. The sampling unit we used to assess community data is the underwater visual census 
transect. This is the standard technique for fish community in coastal marine ecosystems. This dataset has been already successfully 
used in the literature and comparable datasets have been already used in several articles published by renowned journals, including 
Nature.

Sampling strategy Our community dataset encompasses all major biogeographical regions of the world. Our main goal was to evaluate ecosystem 
functioning across the largest range of conditions possible. We are confident that sample size is appropriate for several reasons: 
1) Our dataset is one of the most comprehensive datasets available for coral reefs; 
2) Our experimental design does not include experimental treatments that are extremely sensitive to sample size. Our goal is to 
quantify ecosystem functioning for global coral reefs and our conclusions are robust to changes in sample size; 
3) In order to quantify ecosystem functioning we used bioenergetic models implemented in a Bayesian framework, which 
quantitatively accounts for uncertainty. 

Data collection We collected data available from the literature and empirical data available to co-authors to inform bioenergetic models. 
Bioenergetic models relies on a set of input parameters including elements of metabolism, growth, and diet and body stoichiometry. 
We quantified the input parameters for all species through the integration of empirical data, data synthesis, and Bayesian 
phylogenetic models. Our work includes empirical and literature data on Carbon, Nitrogen and Phosphorous content CNP content in 
fish body (data referred to 1633 individuals belonging to 108 species – available from NMDS, DEB, JEA, VP), metabolic rate (data 
referred to 1393 individuals belonging to 61 species – available from NMDS, SJB, VP), CNP content in diet (data referred to 571 
individuals belonging to 51 species – available from NMDS, JMC, VP), growth curves based on otolith readings (data referred to 710 
individuals belonging to 45 species – available from NMDS, FM, VP). 

Timing and spatial scale Our community data are referred to the period between 1998 and 2002 and are collected at a global scale. 

Data exclusions We removed certain species or individuals from the underwater visual census database to reduce bias. We selected the species 
inside families for which we have body stoichiometric data, that were at least 7cm to minimize the bias related to the identification 
of small individuals, and finally we discarded rare species, for which less than 20 individuals were ever recorded across all transects. 

Reproducibility Our study does not consist in an experiment that can or not be reproduced. All the data and code needed to reproduce our study are 
made available. 

Randomization Our study design does not consist in an experiment that requires randomization test. Our study is based on data on fish traits that are 
used to estimate community level functions. We then used a correlative approach to explore the relative importance of correlates.

Blinding Our study design does not consist in an experiment that requires blinding during data acquisition. Our study is based on data on fish 
traits that are used to estimate community level functions. We then used a correlative approach to explore the relative importance 
of correlates.

Did the study involve field work? Yes No

Field work, collection and transport
Field conditions Water temperature ranged between 27 and 30 degrees Celsius for all sample collection and in the case of collections at the outer 

reef, the wave height did not exceed 1 meter. 

Location Our study uses a combination of published and collected data. All novel sampling was done in Moorea, French Polynesia (-17.53, 
-149.83). 
Published data used came from tropical coral reefs across the world and all exact locations are accessible in the data repository. 

Access & import/export Access, extraction, and transport of samples were approved by the government of French Polynesia.
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Disturbance All data collected in the field had minor disturbance through boat noise and diver presence. Disturbance was minimized by 
respecting the habitat and only affecting targeted individuals. 
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Materials & experimental systems
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Animals and other organisms
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Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals The study did not involve laboratory animals.

Wild animals For this study, fishes were observed in their natural environment, collected alive for respirometry trials, and gut contents, and 
perform body CNP analysis. 
Fishes were observed to record abundance and size during underwater visual census through scuba diving, a widely applied and 
standard technique which has minimal disturbance on the environment.  
All fishes were collected selectively through spear fishing, nets, and clove oil, making while making sure to only affect the targeted 
individual, and minimizing impact on the environment. Fishes targeted for respirometry were immediately placed in a aerated 
container with seawater for transport to the laboratory, and were then kept in tanks with a continuous flow of filtered seawater at a 
constant temperature of 28 degrees Celsius. Fishes targeted for extraction of otoliths, gut content or full body CNP analysis were 
pitted immediately after capture and placed in a cooler with ice, thus minimizing animal suffering. 

Field-collected samples Field collected samples were freeze-dried stored at room temperature for transport to France and the United States for further 
analysis. 

Ethics oversight All protocols related to the capture and handling of fish complied to the ethical standards of CRIOBE and EPHE, and the University of 
California Santa Barbara’s Institutional Animal Care and Use Committee (IACUC #915 2016-2019). Extraction and transport of 
samples were approved by the government of French Polynesia.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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