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Abstract
Marine heatwaves are increasing in frequency and intensity, and indirectly impact-
ing coral reef fisheries through bleaching-induced degradation of live coral habitats. 
Marine heatwaves also affect fish metabolism and catchability, but such direct ef-
fects of elevated temperatures on reef fisheries are largely unknown. We investigated 
direct and indirect effects of the devastating 2016 marine heatwave on the largest 
reef fishery operating along the Great Barrier Reef (GBR). We used a combination of 
fishery-independent underwater census data on coral trout biomass (Plectropomus 
and Variola spp.) and catch-per-unit-effort (CPUE) data from the commercial fishery 
to evaluate changes in the fishery resulting from the 2016 heatwave. The heatwave 
caused widespread, yet locally patchy, declines in coral cover, but we observed little 
effect of local coral loss on coral trout biomass. Instead, a pattern of decreasing bio-
mass at northern sites and stable or increasing biomass at southern sites suggested a 
direct response of populations to the heatwave. Analysis of the fishery-independent 
data and CPUE found that in-water coral trout biomass estimates were positively re-
lated to CPUE, and that coral trout catch rates increased with warmer temperatures. 
Temperature effects on catch rates were consistent with the thermal affinities of the 
multiple species contributing to this fishery. Scaling-up the effect of temperature on 
coral trout catch rates across the region suggests that GBR-wide catches were 18% 
higher for a given level of effort during the heatwave year relative to catch rates under 
the mean temperatures in the preceding 6 years. These results highlight a potentially 
large effect of heatwaves on catch rates of reef fishes, independent of changes in reef 
habitats, that can add substantial uncertainty to estimates of stock trends inferred 
from fishery-dependent (CPUE) data. Overestimation of CPUE could initiate declines 
in reef fisheries that are currently fully exploited, and threaten sustainable manage-
ment of reef stocks.
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1  |  INTRODUC TION

Rapid changes in climate are an important driver of the exploitation 
status of fisheries (Brander, 2010; Free et al., 2019), with extreme 
climate events implicated in both fisheries collapses and unexpected 

productivity booms (Belhabib et al., 2018). Marine heatwaves, in 
particular, are increasing in frequency and intensity under climate 
change, impacting the habitats and ecosystems that regulate the 
productivity of fisheries (Graham et al., 2007; Lefcheck et al., 2017; 
Oliver et al., 2018; Robinson et al., 2019; Smale et al., 2019) and 
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directly affecting the behaviour, ecological interactions, spawning, 
survival and the distribution of fishery species (Auth et al., 2018; 
Caputi et al., 2019). Heatwaves can impact fisheries productivity 
through the direct effects of temperature on the physiology of tar-
get species and indirect effects that play out through impacts on 
their ecosystem, but these are seldom distinguished.

Coral reef fisheries support millions of livelihoods globally (Burke 
et al., 2011), but their productivity may be jeopardized by effects of 
heatwaves on fish physiology and behaviour (Pratchett et al., 2017), 
foodwebs (Hempson et al., 2017; Rogers et al., 2018), and through 
the loss of coral habitats that are sensitive to heatwaves (Hughes 
et al., 2018; Stuart-Smith et al., 2018). Coral habitat loss is the most 
frequently observed cause of indirect heatwave impacts on reef 
fisheries to date (Bell et al., 2013; Graham et al., 2007; Robinson 
et al., 2019). Coral death causes shifts in benthic community compo-
sition (Darling et al., 2019; Hughes et al., 2018) and changes in struc-
tural complexity (Ferrari et al., 2016), both of which are important 
for early life-stages of reef fishery species (Graham & Nash, 2013; 
Wen et al., 2013). The effects of warming on the physiology and 
ecology of fishes may also impact reef fisheries, by directly changing 
survival, growth, activity patterns and therefore the availability of 
fish to the fishery (Pratchett et al., 2017), or indirectly by affecting 
habitat and prey availability (Hempson et al., 2017). The direct ef-
fects of heatwaves on reef fishes are strongly supported by experi-
mental studies (Pratchett et al., 2017), but effects of contemporary 
heatwaves on reef fisheries remain poorly understood.

The impacts of heatwaves on the growth and distribution of 
fish stocks are likely to be confounded with other environmental 
changes, because these impacts will play out over multiple years. 
Short-term impacts of heatwaves on fisheries species may be ex-
pected through sudden declines in survival and behavioural change. 
In particular, behavioural responses of reef fishes to changes in tem-
perature can be strong (Pratchett et al., 2017). These behavioural 
responses to temperature change can affect the catchability 
of fish by fisheries, where catchability is commonly defined as a 
scaling constant relating catch-per-unit-effort (CPUE) to biomass 
(Patterson et al., 1993; Wilberg et al., 2009). Importantly, catch-
ability can change over time and space, depending on a number of 
behavioural attributes of the fishes, including changes in activity, 
feeding rates or escape responses – most of which are tempera-
ture-dependent (e.g. Bacheler & Shertzer, 2020). If catchability in-
creases go unnoticed, a fishery may maintain catch-per-unit-effort 
even as biomass declines, potentially resulting in a sudden unex-
pected collapse (e.g. Hamilton et al., 2016). For example, overfish-
ing of the chub mackerel (Scomber japonicus) fishery off Ecuador 
was associated with temperature-driven changes in catchability 
that caused increases in fishing mortality, despite effort remain-
ing consistent over years (Patterson et al., 1993). Temperature is 
known to affect the catchability of some reef species (Bacheler & 
Shertzer, 2020), though it is not clear whether heatwave events 
could induce changes in catchability. Such effects of temperature 
on catchability might be expected for reef fishes, given their sensi-
tivity to temperature change (Pratchett et al., 2008).

Here we analysed changes in the in-water biomass and catch rates 
of coral trout (Plectropomus and Variola spp.), the major targets of the 
largest commercial reef fishery along Australia's Great Barrier Reef 
(GBR). The GBR is a World Heritage area and is managed through 
an extensive marine park and a number of fisheries regulations 
(Hopf et al., 2016; Little et al., 2011). The major values of the reef 
for biodiversity, tourism and fisheries are increasingly under threat 
from repeated marine heatwaves that have caused mass bleaching 
events, and severe cyclones (GBRMPA, 2019; Mellin et al., 2019). 
The 2016 pan-tropical heatwave caused coral bleaching on 60% of 
the GBR’s reefs, with widespread coral mortality subsequently ob-
served (Hughes et al., 2018; Stuart-Smith et al., 2018). Changes in 
fish community structure were also evident along the entire GBR, 
much of which appeared to be in direct response to warming rather 
than a result of coral mortality (Stuart-Smith et al., 2018), although 
coral mortality also had clear impacts, particularly on small coral-de-
pendent reef fishes (Richardson et al., 2018). It is not clear whether 
the heatwave also affected reef fisheries. The reef line fishery is the 
largest fishery operating in the GBR marine park and the main tar-
gets are coral trout. Coral trout physiology and behaviour are sensi-
tive to changes in temperature (Pratchett et al., 2017), but they also 
respond to changes in prey fish abundance (Hempson et al., 2017) 
and some species are dependent on coral habitats for settlement 
(Wen et al., 2013). Like many other reef fishery targets, the multiple 
potential responses of coral trout to elevated temperatures imply a 
high likelihood of impacts of the 2016 heatwave on the fishery.

We used underwater visual census (UVC) data from 65 reef 
sites on the GBR that were surveyed before and after the 2016 
heatwave along with CPUE data from the Queensland line fishery, 
enabling a concurrent assessment of how the heatwave and associ-
ated habitat changes affected both coral trout populations and the 
fishery. We first hypothesized that the heatwave decreased coral 
trout biomass on northern reefs, where (1) temperatures exceeded 
those found at the warmest sites most of the coral trout species 
have previously been recorded (Stuart-Smith et al., 2017; Wolanski 
et al., 2017), and (2) loss of coral habitat was greatest (Stuart-Smith 
et al., 2018). Warming beyond optimal temperatures of 25–31°C 
also affects multiple physiological and behavioural traits for P. leop-
ardus, which together would be expected to reduce survival rates 
(Johansen et al., 2015; Pratchett et al., 2017). Therefore, we pre-
dicted that temperature rises above ~27°C would cause declines in 
biomass the year after the heatwave. Second, we hypothesized that 
warming may increase the catchability of fish in the line fishery. We 
base this hypothesis on experimental studies of coral trout ther-
mal performance curves, which indicate they eat more at warmer 
temperatures (Johansen et al., 2015), so they may be more likely 
to take a lure or baited line. We then used the empirical analysis on 
the response of the fishery to the heat wave to scale-up the data 
and estimate the effect of the heatwave on the annual catch of the 
fishery. We ultimately aimed to determine how the direct and indi-
rect effects of heatwaves on coral reef fisheries may help or hinder 
the productivity and ongoing sustainable management of reef fish 
stocks.
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2  |  METHODS

Our analysis was divided into three stages. To address the first hy-
pothesis, we used the fishery-independent UVC data to model the 
association between coral trout biomass and environmental covari-
ates, including the heatwave anomaly and coral habitat. We then 
predicted coral trout biomass at the scale of the entire GBR reef line 
fishery and analysed the association between predicted biomass and 
fishery-dependent catch-per-unit-effort data. This analysis allowed 
us to test the hypothesis that warming would increase catchability 
of coral trout. Finally, we estimated the effect of the heatwave on 
catches at the scale of the entire GBR.

2.1  |  Analysis of fishery-independent data on coral 
trout biomass from the underwater visual census

Underwater visual censuses were conducted from 2010 to 2017, 
comprising 117 surveys before the 2016 heatwave and 124 sur-
veys at the same sites between 6  months and 1  year after the 
heatwave (Figure 1a; Stuart-Smith et al., 2018). The UVC methodol-
ogy followed the standardized Reef Life Survey protocol (Edgar & 
Stuart-Smith, 2014), as detailed in an online methods manual (www.
reefl​ifesu​rvey.com). The methods consist of diver counts and size 
estimates of reef fishes observed along 50  m transect lines (‘sur-
veys’) in duplicate 5 m wide belts (total area per transect = 500 m2). 
Biomass was calculated from fish length and counts using species-
specific length-weight coefficients obtained from FishBase (www.
fishb​ase.org) and a correction factor for diver-bias in estimation of 
size, as used in previous studies with these data (Edgar et al., 2004). 
Although UVC data distinguished seven species of coral trout that 
are caught by fishers (dominated by Plectropomus leopardus, but also 
including four other Plectropomus spp. and two Variola spp.), these 
are not distinguished in the fishery statistics. Therefore, UVC data 
on coral trout species were aggregated for the main analyses to be 
consistent with the fisheries data.

We modelled coral trout biomass from the UVC in response to 
the heatwave and other environmental covariates using a Bayesian 
generalized linear mixed effects model (GLMM). There was a high 
frequency of zero biomasses observed in the UVC, so we used a 
log-normal hurdle model. The hurdle model modelled presence–ab-
sence of coral trout on surveys using a Bernoulli GLMM with a logit 
link function, and then biomass of coral trout on surveys where they 
were present with a log-normal distribution. The mean expected 
biomass from the model for a given covariate combination is the 
product of predicted presence rate and biomass conditional on pres-
ence (e.g. Mellin et al., 2012).

We modelled both occurrence (i.e. a binary variable for pres-
ence/absence), and biomass if present, as functions of three nested 
random effects and multiple environmental covariates including the 
long-term mean temperature for a location, the temperature anom-
aly for that location in the year of the survey, marine protected area 
(MPA) zone status, percent cover of live hard corals, wave exposure, 
depth and commercial fishing pressure. The random effects were 
included to model the spatial hierarchy of sampling and included: 
surveys (transect scale) within sites, and sites within the fishery log-
book reporting grids (0.5 degree grid cells, Figure 1). The MPA zone 
status was either fished (including restricted fishing ‘yellow zones’) 
or no-take (‘green zones’). Wave exposure was scored on a three-
point scale with 1 = sheltered from winds in the prevailing direction; 
2 = exposure to wind from the prevailing direction; and 3 = exposed 
to ocean swells. Depth was binned into three categories of <4 m, 
4–10 m, >10 m. Commercial fishing pressure was quantified as the 
sum of all days of fishing since 2007 in each survey's logbook grid.

Sea surface temperature data were measured by AVHRR in-
strument on the NOAA-19 satellites (Integrated Marine Observing 
System, 2014). We obtained composite (IMOS - SRS - SST - L3C) sea 
surface temperatures at a daily resolution from night-time passes 
at a 0.02 by 0.02 degree resolution (L3S dataset, cylindrical equi-
distant projection) for 2010–2016. We chose this time period to be 
consistent with the time period of the UVC data. Validation against 
ocean buoy data suggests that bias is usually <0.05°C (Integrated 

F I G U R E  1  (a) Map of the mean annual catch-per-unit-effort in the line fishery (2007–2016) across the Great Barrier Reef and the 
locations of the UVC sites (note that sites outside of the GBR in the western Coral Sea shown were used for the supplemental analysis of 
species composition, but are outside of the limits of the fishery, so were not used for matching to the fisheries data), (b) SST anomaly for 
2015 with sites surveyed before the heatwave, and (c) SST anomaly for 2016 with sites surveyed after the heatwave

http://www.reeflifesurvey.com
http://www.reeflifesurvey.com
http://www.fishbase.org
http://www.fishbase.org
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Marine Observing System, 2014). We then aggregated the daily data 
to monthly values by taking the maximum at any given grid cell in 
each month of each year. Monthly maximums were then resampled 
to unprojected coordinates, using a bilinear interpolation, and finally 
aggregated to the scale of the logbook reporting grids again by tak-
ing the maximum value. All analyses were performed in the R pro-
gramming language (3.6.2 R Core Team, 2019) using the packages 
‘raster’ (Hijmans, 2020) and ‘sf’ (Pebesma, 2018).

The temperature data were pre-analysed to create two covari-
ates representing the mean temperature for each logbook reporting 
grid (averaging over all days from 2010 to 2016) and the annual tem-
perature anomaly for the year of the UVC survey. Years were taken 
as Australian financial years (1 July–30 June) that span summer and 
are consistent with the reporting of fish catch in Queensland. The 
anomaly was calculated per grid as the grid's annual mean tempera-
ture minus its 2010–2016 mean (Figure 1b,c). Both temperature co-
variates were calculated at the scale of the logbook reporting grids 
to be consistent with the fishery data.

The mean temperature was included to capture spatial gradients 
of biomass that relate to temperature, the anomaly was included to 
capture year-to-year responses of biomass to temperature. We also 
included a term for the interaction between the mean temperature 
(reflecting latitudinal gradients) and the anomaly. The interaction 
allowed for our hypothesis that in the year after the heatwave bio-
mass would decrease at northern sites and show little response at 
southern sites.

The model of biomass did not allow for different performance 
curves for different coral trout species. However, it is likely that 
Plectropomus species have similar thermal performance curves. The 
range mid-point for all five Plectropomus species investigated occurs 
at average annual temperatures of 22–29°C and all three have similar 
latitudinal extents (Waldock et al., 2019). Variola spp. tend to occur 
in warmer waters than Plectropomus spp. (and often a little deeper), 
but were more rarely observed in the UVC data and are a minor por-
tion of the catch in the commercial fishery (Leigh et al., 2014).

Seasonal extremes of temperature may have a greater influence 
on fish range limits than annual means (Stuart-Smith et al., 2017), 
so we compared models that used three different sea temperature 
metrics. The first metric was the annual mean and annual anomaly, 
as described above. We also ran models using either March max-
imum or July minimum sea temperatures to calculate the spatial 
gradient and anomalies. Comparisons of model fits with the three 
different temperature measures were made by comparing the mod-
els for their leave-one-out cross-validation scores (LOO). The LOO 
was computed using the efficient approximate algorithm (Bürkner, 
2018; Vehtari et al., 2017). Some observations were a poor fit to the 
approximation, for these we calculated exact cross-validation scores 
(Bürkner, 2018). Model fits were verified by checking the spread 
of the Dunn-Smyth residuals of both the occurrence and biomass 
stages. We also confirmed there was no spatial auto-correlation 
present in the Dunn-Smyth residuals.

We then sought to estimate how reliably we could extrapolate 
the biomass predictions to regions with no UVC surveys. After 

choosing the most parsimonious temperature covariate, we made 
one more comparison of the full model to a reduced model. The 
reduced model included only those covariates that were available 
across the entire GBR (i.e. fixed effects of SST covariates, MPA 
zone, commercial fishing pressure and the random effects). The 
comparison of the full and reduced models was made with the LOO 
as above.

All models were fitted with the ‘Bayesian Regression Models 
using Stan’ (brms) R package (Bürkner, 2018), with four chains, where 
each chain had a warm-up of 1000 iterations and then 2000 sam-
ples. We confirmed algorithm convergence with visual checks and 
the Rhat statistic. We chose conservative priors that promoted 
shrinkage of effects towards zero, including a N (0, 10) prior for fixed 
effects and Exp (1) priors for the random effect standard deviations 
(McElreath, 2020).

We present results as predicted change in expected biomass 
across the temperature gradients and anomalies. This facilitates in-
terpretation of interactive terms. Other effects were plotted with 
marginal uncertainty intervals, and we calculated the two-tailed 
probability of whether the estimate was different to zero.

2.2  |  Analysis of catch-per-unit effort data

Fisheries catch data for coral trout were provided by the Queensland 
Government (State of Queensland Department of Agriculture 
Fisheries & Forestry, 2020), obtained from mandatory logbooks 
filled out by commercially licensed fisheries operating in Queensland 
waters and the Great Barrier Reef Marine Park. Species-specific data 
for coral trout from the fishery are not considered accurate, but 
the fishery catch is primarily composed of P. leopardus (Leigh et al., 
2014). Catch and effort (days of fishing) are available on an annual 
basis (financial years 1 July–30 June) since 1990 for the fisheries 
reporting grids (Figure 1). The fishery generally operates in depths 
<30 m. Grid/year combinations with less than five boats fishing are 
not available due to data privacy rules.

We next estimated how catchability varied with temperature. 
We defined catchability as slope of the relationship between bio-
mass and CPUE:

where the term eq0 eq1Ti,t reflected the ‘catchability coefficient’ with 
intercept q0 and a slope of q1 on Ti,t, the annual mean sea surface tem-
perature in a grid, i, in a year t. Bi,t was the unobserved biomass in a 
grid and there are log-normally distributed errors εi,t on CPUE. If we 
log this equation, then we have a log-linear model that can be fit using 
Bayesian regression and a normal distribution on ln(CPUE).

Biomass (Bi,t) at the scale of the logbook grids was unknown, so 
we predicted it from the reduced model of coral trout biomass in 
UVC surveys. This meant we matched UVC collected at the scale of 
500 m2 surveys to the fishery grid cells (~2900 km2, Figure 1a). The 
disparity in scale meant it was important to account for uncertainty 

(1)CPUEi,t = eq0 eq1Ti,t Bi,te
�i,t ,
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when scaling-up biomass predictions. So the unknown logbook scale 
biomass was modelled with a measurement error model:

where Bi,t was the predicted mean grid level biomass, zi,t was an error 
term taken as the standard error of the posterior predictive estimate 
of Bi,t from the biomass model. Predictions for coral trout kg/ha were 
conditional on the grid level random effects, disregarding site-level 
variation. For each grid, we then obtained posterior distributions for 
grid-level biomass by multiplying posterior distributions for kg/ha by 
the grid's area.

The scale-matching model had CPUE data from 25 grids/year 
combinations from 17 logbook grids and spanned an area of 1.22 
million ha of reef and 21% of annual mean catch over 2010–2016. 
The model was fitted with the ‘brms’ R package using the measure-
ment error model specification and 18,000 samples from four chains 
to achieve convergence. Priors and model verification were as above 
for the biomass model.

Our hypothesis that temperature directly affects catchability may 
be invalidated if there were shifts in species composition before and 
after the heatwave, since different coral trout species may have differ-
ent catchability. To confirm the dominance of P. leopardus, we examined 
the proportional composition of the biomass of the coral trout taxa ob-
served in the UVC data by species before versus after the heatwave. 
We plotted composition for two regional covariates: inshore Great 
Barrier Reef, offshore Great Barrier Reef or Coral Sea, and southern 
(>20.5oS), mid (20.5oS–15.3oS) and northern regions (<15.3oS). Regions 
were chosen to ensure a relatively even spread of sites among the dif-
ferent regions and capture known regional variation in species compo-
sition. We included an additional 121 Coral Sea sites from (Stuart-Smith 
et al., 2018) in this analysis, but note these were not included in the 
model of coral trout biomass because paired CPUE data were lacking.

2.3  |  Analysis of all CPUE data using reef area as a 
proxy of biomass

We verified the relationship between CPUE and UVC data by conduct-
ing a further analysis on all annual CPUE data from 2011 onwards, 
giving us a sample size of 461 grids/years (compared to 25 grids/ year 
combinations in the UVC analysis). We chose to use data from 2011 
because this recent period has had reasonably stable management regu-
lations (Leigh et al., 2014). For this verification, we included reef area 
per grid cell as a proxy of coral trout biomass. We also included covari-
ates for cumulative fishing effort (days of fishing) over the past 5 years, 
as proxies for coral trout biomass. UVC biomass was highly variable 
across survey sites, and at the scale of the fisheries grids, variation in 
biomass was primarily driven by the area of reefs (Figure S1). Fishing 
effort is also likely an important driver of spatial patterns in coral trout 
biomass. The larger sample of data allowed us to consider additional co-
variates that are known to affect catchability (Leigh et al., 2014). These 
were number of high-wind days per year (number of days with mean 

wind speed over 20 knots) and number of cyclones per year (Bureau of 
Meteorology, 2020). Wind and cyclones were included because coral 
trout are believed to move deeper than the typical fishing depths after 
high-wind events (Leigh et al., 2014). We also used historical fishing 
effort (summed over the past 5 years), area of reef in the grid cell, and 
a smoother on financial year. High wind days was estimated using the 
Cross-Calibrated Multi-Platform gridded surface vector winds product, 
which is an interpolated global wind product that uses a combination of 
remote and in-situ data (Wentz et al., 2015). We fit this model as a gen-
eralized additive mixed model (GAMM; Wood, 2017), estimating the 
effect of each covariate with thin plate smoothing splines. The GAMM 
framework allowed us to include spatio-temporal random effects, 
which would capture other spatial gradients in CPUE not related to 
the covariates. These were individual grid cell level random intercepts 
and a Gaussian process smooth for grid cell location, with the smooth 
varying by years (Wood, 2017). The model was fitted using restricted 
maximum likelihood optimization and Bayesian credible intervals were 
estimated as per Wood (2017). We performed stepwise simplification 
on the full model using the AIC criteria (steps given in Table S1), choos-
ing the model with the lowest AIC for analysis of effect sizes.

2.4  |  Scaling up the impact of the heatwave on 
fishery catches

We aimed to estimate the impact of the heatwave on fishery catches 
during the heatwave year. We first evaluated errors in the prediction 
of CPUE. We calculated the root-mean-square error by comparing 
model predictions for ln(CPUE) to observed ln(CPUE) for all grid/
year combinations with no UVC survey over 2010–2016. Ln(CPUE) 
was normalized against the range of ln(CPUE). As a further compari-
son, we compared predicted catch, based on the 2015–2016 effort 
distribution to observed catch. These estimates of error are impor-
tant when interpreting the strength of results of the scaling-up.

To estimate the effect of the heatwave on the total catch of the 
fishery, we predicted CPUE across all grid cells in the 2015–2016  
financial year using temperature conditions from that year. We then 
multiplied by effort to get the predicted catch distribution for that year. 
We compare the predicted catch distribution in 2015–2016 against 
catch predicted for the average (2010–2016) temperature distribution.

3  |  RESULTS

3.1  |  Response of coral trout biomass to the 
heatwave and other environmental covariates

Model selection did not discriminate among the three models 
with annual and seasonal temperature metrics, the LOO was 1622 
(±81.2 SE), 1621 (±81 SE), 1622 (±81.5 SE) for the annual average, 
March maximum and July minimum temperatures respectively. We 
therefore proceeded with models based on the March maximum, be-
cause this matched the season when the heatwave was most severe.

(2)ln
(

Bi,t
)

= ln

(

Bi,t

)

+ zi,t,
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The biomass model had a predictive R2 of 0.30 (0.17–0.40, 95% 
CIs), and the occurrence model had an in-sample AUC of 0.69 (0.62–
0.75, 95% CIs). Model verification indicated normality assumptions 
were satisfied (Figure S1), and that there was no detectable spatial 
autocorrelation in Dunn-Smyth residuals.

The expected biomass of coral trout was higher in regions with 
higher long-term averaged SST, but overall there was high unex-
plained variation in the biomass trend, so the effect of SST was 
weak (Figure 2). During the heatwave, the warmer than average SST 
flattened the gradient of biomass, such that warmer sites were pre-
dicted to have slightly lower biomass and cooler sites predicted to 
have slightly higher biomass (Figure 2). This flattening was indicated 
by high probability that mean SST and the SST anomaly interacted 
to affect biomass (probability the effect was <0 = 0.94, Figure 3). 
There was slightly less evidence for an interactive effect on the oc-
currence rate (probability the effect was >0 = 0.91, Figure 3). For 
example, the average temperature anomaly at sampling sites before 
the heatwave was −0.1°, whereas during the heatwave, it was +1.0°. 
Given these anomalies, the models suggested with high probability 
that coral trout biomass showed regional increases after the heat-
wave in the coolest fishery grid cells (average SST 27.7°C; p = 0.94) 
and decreased in the warmest grid cells (mean SST 30.1°C; p = 0.98). 
The broad uncertainty intervals indicate that this effect was weak 
relative to other sources of variation (Figure 2).

None of the other environmental covariates, including coral cover, 
had a strong effect on coral trout biomass, and only depth affected 
coral trout occurrence (Figure 3). Coral trout were predicted to occur 
less frequently in shallower water (<4 m deep; Figure 3, p > 0 = 0.99).

The reduced model that included only variables available across 
the GBR had a slightly poorer fit (Figure S1) than the models with the 
small-scale covariates; however, the fit was within the error bounds 
of the full model LOO estimates (LOO = 1672, ±81.5 SE). The es-
timates for the effect of the temperature anomaly in the reduced 
model were similar to the full model (Figure S2).

3.2  |  Catchability in relation to underwater 
biomass data and SST

The estimates of UVC biomass for whole CPUE grid cells had a 
positive relationship with reef area, which flattened for reef areas 
>500  km2 (Figure S3). Across all grid cells with coral-trout catch, 
CPUE was positively related to reef area (Figure S4).

CPUE was positively related to the estimates of mean in-wa-
ter biomass (Figure 4; slope of 0.93, 0.57 to 1.34, 95% CIs, fit to 
data shown in Figure S5). Deviations in the relationship between 
CPUE and in-water biomass were consistent with a positive effect 
of temperature on catchability (Figure 4, fit to data in Figure S6), 
with an average increase in CPUE of 1.4 times per 1 SD increase 
in temperature (1.08 to 1.78, 95% CIs) and a probability of 0.999 
that the SST effect increased CPUE. For instance, at a biomass of 
500 tonnes (per grid cell) there was a 0.003 probability that CPUE 
was >0.03 tonnes/day at average temperatures but 0.89 proba-
bility that CPUE  >  0.03 for a temperature 1 SD (=0.98°C) above 
average. The increase in catchability under warming meant that 
more catch can be taken with an equal amount of effort in warmer 
years, or the same amount of catch can be taken with less effort 
(Figure 4).

We confirmed that the catchability change could not be ex-
plained by shifts in species composition. Plectropomus leopardus was 
the dominant coral trout species on underwater censuses across 
most of the Great Barrier Reef region (Figure S7), while Plectropomus 
laevis dominated at Coral Sea sites and Plectropomus maculatus dom-
inated at inshore southern sites. There was no significant change in 
the dominant species before versus after the heatwave for any re-
gion, although P. laevis became slightly more common as P. leopardus 

F I G U R E  2  Expected biomass of coral 
trout on UVC surveys for mean SST and 
SST anomalies (a) and different levels of 
coral cover crossed with different mean 
SST (b) [Colour figure can be viewed at 
wileyonlinelibrary.com]

F I G U R E  3  Distributions of the marginal parameter estimates 
from the environmental model of coral trout biomass and 
occurrence. Colours indicate two-tailed probabilities of x > 0 or x < 0, 
where darker colours indicate a higher probability the parameter 
estimate is different from zero. Note the x-axis is truncated at +10, 
the SST anomaly parameter estimates had long positive tails [Colour 
figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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declined at northern offshore Great Barrier Reef and northern Coral 
Sea sites (which do not overlap with the fishery data).

3.3  |  Analysis of all CPUE data using reef area as a 
proxy of biomass

The analysis relating all available CPUE data back to 2011 to reef 
area (a proxy of biomass) and other environmental covariates 

indicated that a model with a non-linear effect of reef area, linear 
effect of SST, non-linear effect of year, and a spatial smooth that 
varied by years was optimal (Table S1). Wind and cyclones were not 
important predictors of annual CPUE. The effect of area indicated 
increasing catch rates up to a maximum at a reef area of 400 km2 
(Figure S4). Increases in SST in a grid in a year also increased CPUE 
by a multiple that was of similar magnitude to that estimated by the 
UVC model: 1.32 times (Figure S7, 1.1 to 1.63, 95% CIs). The prob-
ability SST was associated with increased CPUE was also >0.999.

3.4  |  Scaling-up catch estimates for 2016

Total catch in the grid cells with data for the 2015–2016 financial 
year was reported to be 850  tonnes. Transforming the predicted 
CPUE in all grid cells and using the 2015–2016 effort distribution 
gave an expected catch of 798 tonnes (368–1934 tonnes, 95% CIs). 
This estimate accounted for uncertainty in the grid level biomass es-
timates. The root mean square error for predictions of ln(CPUE) in 
grid squares that did not have a UVC survey was 1.41, or error that 
was 30% of the range of ln(CPUE) values (20%–54%, 95% CIs). The 
error was high because of uncertainty in biomass and the estimated 
catchability coefficient.

When predictions were made conditional on the mean UVC bio-
mass, the CPUE model predicted a catch of 805 tonnes in 2015–
2016 (544–1224 tonnes, 95% CIs). The catch estimate was reduced 
to 680 tonnes (464–1018 tonnes, 95% CIs) when predictions were 
made using average March temperatures over 2010–2016. Thus, the 
model-predicted catches during the heatwave year were 18% higher 
than under average temperatures for the same amount of fishing 

F I G U R E  4  Predicted relationship between grid-level expected 
biomass predictions and CPUE under different temperatures. 
Colours represent SST values (mean ± 1 SD), 95% CIs, are given 
as dashed lines for just the mean SST for clarity of presentation 
[Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E  5  Expected difference in 
catch (%) during the heatwave year (2016) 
from mean temperature conditions. 
(a–c) show median and lower and upper 
95% probability quantiles. Predictions 
were made assuming coral trout biomass 
was fixed at its mean for each fishery 
grid [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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effort. The greatest predicted effect of the heatwave on catch 
was in the Northern and mid-GBR (Figure 5), where the tempera-
ture anomaly was the greatest (Figure 1). In the north there was a 
high certainty of a positive effect of the heatwave on catches (95% 
CIs > 0, Figure 5), whereas in the south, there was lower certainty as 
to the direction of the effect of the heatwave on catches (95% CIs 
close to zero, Figure 5).

The effect of the heatwave was not evident in the overall spatial 
pattern of catch in 2015–2016, which were largely consistent with 
earlier years (Figure S9). This suggests increases in catchability were 
compensated for by reduced fishing effort.

4  |  DISCUSSION

The most significant effect of the heatwave on coral trout that we 
observed was a higher catch per unit effort where biomass had de-
clined following the heatwave, caused by an increase in catchability. 
The increase in catchability could have many causes, but is consist-
ent with experimental studies that have tested the physiological 
tolerance of coral trout to warming. Warming affects multiple physi-
ological and behavioural traits that we hypothesize are related to 
catchability. Warming increases metabolic needs of individual fish, 
who respond by increasing their feeding rates (Johansen et al., 
2015). Higher feeding rates in warmer seas may explain the increase 
in catchability: the reef line fishery uses bait or lures to catch fish 
(Leigh et al., 2014), so fish may be more likely to take the line if they 
are feeding at a higher rate. Warming to the extent that occurred 
in the heatwave reduces spontaneous swimming speed (Johansen 
et al., 2014), and warmer climates and seasons are also associated 
with smaller home ranges (Scott et al., 2019). Swimming speed and 
home range size may both affect the likelihood that coral trout take 
bait or lures. Further work is needed to test how changes in these 
behavioural traits affect fish preferences for bait versus wild prey, 
which may be harder to catch.

Three alternate hypotheses for the causes of these changes in 
catchability include foraging efficiency, prey availability and spe-
cies turnover, all of which we consider less likely than physiologi-
cally mediated impacts on catchability. First, loss of coral habitats 
may impact feeding success by coral trout (Hempson et al., 2017), 
which could presumably affect their catchability in the fishery. It has 
been proposed that the likelihood of coral trout taking bait or lures is 
lower after loss of structurally complex corals because it is easier for 
coral trout to catch their prey (Brown et al., 2020; Leigh et al., 2014). 
However, this hypothesis predicts declines in catchability following 
coral loss, the opposite pattern to what we observed.

Second, declines in structurally complex coral may also see a 
reduction in prey fishes, increasing the likelihood that coral trout 
take bait or lures. This process is most likely to affect coral trout 
over longer time-scales than our study, because it requires erosion 
of reef structure to impact prey fishes. It is also unlikely to impact 
such flexible predators as coral trout. Populations of P. maculatus 
can switch to feeding through entirely different trophic pathways 

following coral degradation (Hempson et al., 2017). No widespread 
changes in potential prey items (small fishes) were observed in the 
UVC data as a result of the heatwave (although a subset of highly 
coral-dependent species suffered on the worst hit reefs; Stuart-
Smith et al., 2018), and it is unlikely trout would be found at sites 
where they were food-limited. Longer-term degradation of coral 
will cause changes in food webs that may impact coral trout pop-
ulations (Hempson et al., 2017; Rogers et al., 2018) but we suggest 
that the major impact of degradation on fisheries would be noticed 
through changes in occurrence and biomass rather than changes in 
catchability.

A third hypothesis we can exclude is that changes in the relative 
proportions of the different coral trout species available to catch 
could also affect the overall catchability for the fishery. Our mod-
els predicted the greatest increase in catchability on northern reefs, 
which remained dominated in the UVC data by P. leopardus both 
before and after the heatwave (Figure S8). Inshore northern reefs 
saw a decline in the biomass of P. maculatus relative to other coral 
trout species and it is possible this change in species composition 
may have contributed to changes in catchability if this species was 
harder to catch than the others. We are not aware of any evidence 
documenting that coral trout species vary in their catchability in line 
fisheries, but fish catch data resolved to the species level could help 
future studies to address this knowledge gap.

We also observed that coral trout biomass was reduced after 
the heatwave in warmer low latitude reefs, but was stable or 
slightly increasing on cooler high latitude reefs. The model sug-
gested that the decline in biomass was attributed to the tempera-
ture anomaly, rather than fishing pressure, but the high variability 
in predictions suggests further data are needed to confirm the ef-
fects of temperature on coral trout biomass on the GBR. Further, 
it is unclear from this data if biomass changes were caused by mi-
gration or increased mortality. Coral trout population productiv-
ity may be sensitive to climate warming, and vulnerable to decline 
in low latitude locations that are already close to coral trout upper 
thermal limits (Stuart-Smith et al., 2017). Effects of high tempera-
tures observed for coral trout species include reduced aerobic 
scope, swimming speeds and survival at temperatures from 27°C 
to 30°C (Pratchett et al., 2017). These observations from labora-
tory studies are consistent with our finding that declining biomass 
may have occurred at the northernmost edge of the range, where 
mean summer temperatures are close to 30°C and the heatwave 
raised temperatures by ~1°C (Wolanski et al., 2017). At higher lat-
itudes, where typical temperatures are below the thermal optimal 
for coral trout, heatwaves may enhance coral trout survival and 
contribute to higher recruitment of early life-stage individuals 
(Bornt et al., 2015).

A caveat to our finding of reduced biomass is that behavioural 
change may also affect UVC estimates of biomass. Some fishes may 
respond to warming by migrating to deeper, cooler water (Dulvy 
et al., 2008), and coral trout are believed to migrate deeper in re-
sponse to other extreme weather events, like cyclones (Leigh et al., 
2014). However, it is unlikely that the reduction in biomass observed 
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is indicative of coral trout migrating to reefs beyond the span of the 
UVC surveys, because coral trout are most common down to depths 
of 20 m (Leigh et al., 2014) and the UVC surveys included surveys 
to 17 m (Stuart-Smith et al., 2018). Home range size also changes in 
response to temperature (Scott et al., 2019), and home-range size 
may affect the likelihood of detecting fish on UVC surveys, though 
it is not clear in what direction. Electronic tagging studies (e.g. Scott 
et al., 2019) and paired catch-UVC studies (Bacheler & Shertzer, 
2020) would help identify the mechanism for reduced biomass at 
warm sites.

Some coral trout species make use of live coral habitat for set-
tlement (Wen et al., 2013) and feed on prey that use coral habitat 
(John et al., 2001), so coral loss could cause declines in coral trout 
biomass over longer timespans than the duration of this study. 
Temperature may also impact spawning behaviour and affect fer-
tilization and therefore numbers of settlers (Pratchett et al., 2017). 
Settling P. maculatus rely on structured corals for shelter, with en-
hanced recruitment in areas with higher live coral cover (Wen et al., 
2013). Given the age at first breeding for coral trout is 2–3 years and 
that adult biomass is dominated by older age-classes, the impacts 
of reduced coral cover on adult biomass are unlikely to manifest for 
>5 years (Brown et al., 2020). The dependency of coral trout on coral 
may expose the productivity of the fishery to the multiple stressors, 
including poor water quality and climate warming, that are currently 
causing coral declines and hindering coral recovery (Mellin et al., 
2019; Wolff et al., 2018). Continuing monitoring is needed to under-
stand the magnitude of coral habitat loss effects on coral trout over 
longer timescales than were studied here.

Global warming could potentially affect sustainability of the coral 
trout fishery if heatwave-induced spikes in catchability are not ac-
counted for in stock assessments. Currently, heatwave events of the 
magnitude observed in 2016 are predicted to occur every 3 years; 
with 1.5 degrees of global warming, 2016-like events may occur 
more often than every 2 years on average (King et al., 2017). Since 
2016, the GBR has experienced successive heatwaves in 2017 and 
2020. The management regime of the reef line fishery is likely robust 
to infrequent changes in catchability of the magnitude we observed 
because catches are well below the maximum sustainable yield 
(Campbell et al., 2019). The existing management regime that mixes 
marine parks and catch quotas is also robust to regional variation 
in ecological dynamics (Bode et al., 2016), overfishing (Hopf et al., 
2016; Little et al., 2011) and climatic change (Hopf et al., 2019). A 
stock assessment conducted in 2014, which utilized UVC and CPUE 
data, did not find any effects of coral bleaching events on stock 
productivity, and environmental change was found to have limited 
impact on the fishery (Leigh et al., 2014). Regardless, this may not 
be the case in future. If contemporary 3-yearly spikes in catchability 
are combined with productivity declines due to loss of recruitment 
habitat (Brown et al., 2020), the stock may become susceptible to 
overfishing. Continued monitoring of coral trout biomass is needed 
to assess the impacts of recurrent heatwaves on catchability, so we 
can quantify the cumulative effects of multiple heatwave events, 
which may be non-linear. The recreational catch of coral trout adds 

further uncertainty (see below), and future increases in recreational 
effort could also take stocks to the point where catchability changes 
induced by warmer seas could be critical. The latest stock assess-
ment identified that accounting for environmental change, includ-
ing heatwaves, is a priority for future stock assessments (Campbell 
et al., 2019).

Stock assessments, including stock parameter estimates, need 
updating more frequently in fisheries subject to rapid environmental 
change, regardless of the ecological causes of population responses 
to environmental change (Brown et al., 2012). For instance, the total 
current allowable catch in the reef line fishery is set on the basis 
of the ratio between current CPUE and a target CPUE (The State 
of Queensland, 2017), but this ratio assumes a constant linear rela-
tionship between CPUE and biomass. More generally than Australia, 
coral trout are caught in many tropical reef fisheries, but those 
fisheries are typically poorly regulated and often overfished (Frisch 
et al., 2016), and increasing catchability would only be expected to 
worsen overfishing. Our results indicate that this assumption is only 
reasonable in the absence of changing environmental temperatures, 
and highlights the critical importance of fishery independent data 
for informing stock assessments.

An important caveat to our analysis is that we did not consider 
the impact of the recreational fishery on biomass or the effects of 
heatwaves on catchability in the recreational fishery. Overall, rec-
reational fishing made up a minority of the catch in the 2017–2018 
financial year (estimated at 17% of total catch; Campbell et al., 2019), 
but its effects may be locally intense. The recreational fishery targets 
coral trout with line fishing and spearfishing. Line fishing is likely to 
be subject to similar increases in catchability during heatwaves as we 
observed here, whereas it is unclear how high temperatures would 
affect catchability by spear fishers. Data from the recreational fish-
ery are only collected intermittently and are not spatially resolved 
for detailed use in analyses such as those undertaken here (Webley 
et al., 2015). Future research would usefully directly involve recre-
ational fishers to better understand factors affecting catchability.

Globally, fisheries are highly susceptible to climate change, 
potentially negatively affecting food security and livelihoods of 
hundreds of millions of people (Cheung et al., 2010). While the pre-
dominant research focus has been on impacts of habitat loss on coral 
reef fish assemblage composition and productivity (e.g. Hopf et al., 
2019; Robinson et al., 2019), our study adds to the evidence that 
temperature-driven changes in catchability are important to con-
sider in reef fishery management (Bacheler & Shertzer, 2020). We 
suggested here that changes in catchability are heavily influenced 
by mechanisms stemming from physiological responses to warm-
ing, but we recommend further experimental studies to explore 
ecological mechanisms that may independently involve changes in 
prey or habitat. Increases in catchability during heatwaves similar 
to that found for coral trout may also be widespread globally, given 
the prevalence of line and trap capture methods among coral reef 
fisheries. To avoid collapses induced by environmental change, fish-
eries management should use data on stock biomass that are inde-
pendent of fishery catches. Our work highlights the importance of 
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fisheries-independent data, which unfortunately are not collected 
for most reef fisheries (Pauly & Zeller, 2016), and precautionary 
management that is adaptive to climate change to sustain reef fish-
eries into the future.

ACKNOWLEDG EMENTS
C.J.B. was supported by a Discovery Early Career Researcher 
Award (DE160101207). We thank Reef Life Survey (RLS) divers and 
boat skippers who assisted with field surveys, including D. and J. 
Shields, I. Donaldson and S. Griffiths, and A. Cooper, J. Berkhout 
and E. Clausius at the University of Tasmania for logistics and data 
management. Funding and support for the GBR and Coral Sea RLS 
field surveys were provided by The Ian Potter Foundation and Parks 
Australia. Permits were provided by Parks Australia and the Great 
Barrier Reef Marine Park Authority. The SST data and the RLS data 
management is supported by Australia’s integrated marine observ-
ing system (IMOS). IMOS is enabled by the national collaborative 
research infrastructure strategy (NCRIS). It is operated by a con-
sortium of institutions as an unincorporated joint venture, with the 
University of Tasmania as lead agent. The authors are grateful to the 
Queensland Government for providing open-access data on fisher-
ies harvest through the QFish portal.

DATA AVAIL ABILIT Y S TATEMENT
The data that support the findings of this study are openly avail-
able from the Queensland Government, the Reef Life Survey and the 
Integrated Marine Observing System at https://reefl​ifesu​rvey.imas.
utas.edu.au/stati​c/landi​ng.html and https://qfish.fishe​ries.qld.gov.au/.

ORCID
Christopher J. Brown   https://orcid.org/0000-0002-7271-4091 
Camille Mellin   https://orcid.org/0000-0002-7369-2349 
Max D. Campbell   https://orcid.org/0000-0003-2860-1580 

R E FE R E N C E S
Auth, T. D., Daly, E. A., Brodeur, R. D., & Fisher, J. L. (2018). Phenological 

and distributional shifts in ichthyoplankton associated with recent 
warming in the northeast Pacific Ocean. Global Change Biology, 
24(1), 259–272. https://doi.org/10.1111/gcb.13872

Bacheler, N. M., & Shertzer, K. W. (2020). Catchability of reef fish species 
in traps is strongly affected by water temperature and substrate. 
Marine Ecology Progress Series, 642, 179–190.

Belhabib, D., Dridi, R., Padilla, A., Ang, M., & Le Billon, P. (2018). Impacts 
of anthropogenic and natural “extreme events” on global fisher-
ies. Fish and Fisheries, 19(6), 1092–1109. https://doi.org/10.1111/
faf.12314

Bell, J. D., Ganachaud, A., Gehrke, P. C., Griffiths, S. P., Hobday, A. J., 
Hoegh-Guldberg, O., Johnson, J. E., Le Borgne, R., Lehodey, P., 
Lough, J. M., Matear, R. J., Pickering, T. D., Pratchett, M. S., Gupta, 
A. S., Senina, I., & Waycott, M. (2013). Mixed responses of tropical 
Pacific fisheries and aquaculture to climate change. Nature Climate 
Change, 3(6), 591–599.

Bode, M., Sanchirico, J. N., & Armsworth, P. R. (2016). Returns from 
matching management resolution to ecological variation in a 
coral reef fishery. Proceedings of the Royal Society B: Biological 
Sciences, 283(1826), 20152828. https://doi.org/10.1098/rspb.​
2015.2828

Bornt, K. R., McLean, D. L., Langlois, T. J., Harvey, E. S., Bellchambers, 
L. M., Evans, S. N., & Newman, S. J. (2015). Targeted demersal fish 
species exhibit variable responses to long-term protection from 
fishing at the Houtman Abrolhos Islands. Coral Reefs, 34(4), 1297–
1312. https://doi.org/10.1007/s0033​8-015-1336-5

Brander, K. (2010). Impacts of climate change on fisheries. Journal of 
Marine Systems, 79(3–4), 389–402.

Brown, C. J., Fulton, E. A., Possingham, H. P., & Richardson, A. J. (2012). 
How long can fisheries management delay action in response 
to ecosystem and climate change? Ecological Applications, 22(1), 
298–310.

Brown, C. J., Taylor, W., Wabnitz, C. C. C., & Connolly, R. M. (2020). 
Dependency of tropical fisheries on reef-associated fish: Insights 
from Queensland and the great barrier reef. Scientific Reports, 10, 
17801.

Bureau of Meteorology. (2020). Australian tropical cyclone database. 
http://www.bom.gov.au/cyclo​ne/tropi​cal-cyclo​ne-knowl​edge-
centr​e/datab​ases/

Burke, L., Reytar, K., Spalding, M., & Perry, A. (2011). Reefs at Risk Revisited. 
World Resources Institute.

Bürkner, P.-C. (2018). Advanced bayesian multilevel modeling with 
the R package brms. The R Journal, 10, 395–411. https://doi.
org/10.32614/​RJ-2018-017

Campbell, A., Leigh, G., Bessel-Browne, P., & Lovett, R. (2019). Stock 
assessment of the Queensland east coast common coral trout 
(Plectropomus leopardus) fishery. http://era.daf.qld.gov.au/id/eprin​
t/7009/

Caputi, N., Kangas, M. I., Chandrapavan, A., Hart, A., Feng, M., Marin, 
M., & de Lestang, S. (2019). Factors affecting the recovery of inver-
tebrate stocks from the 2011 Western Australian extreme marine 
heatwave. Frontiers in Marine Science, 6, 484.

Cheung, W. W., Lam, V. W., Sarmiento, J. L., Kearney, K., Watson, R., 
Zeller, D., & Pauly, D. (2010). Large-scale redistribution of maximum 
fisheries catch potential in the global ocean under climate change. 
Global Change Biology, 16(1), 24–35.

Darling, E. S., McClanahan, T. R., Maina, J., Gurney, G. G., Graham, N. A. J., 
Januchowski-Hartley, F., Cinner, J. E., Mora, C., Hicks, C. C., Maire, 
E., Puotinen, M., Skirving, W. J., Adjeroud, M., Ahmadia, G., Arthur, 
R., Bauman, A. G., Beger, M., Berumen, M. L., Bigot, L., … Mouillot, 
D. (2019). Social–environmental drivers inform strategic manage-
ment of coral reefs in the Anthropocene. Nature Ecology & Evolution, 
3(9), 1341–1350. https://doi.org/10.1038/s4155​9-019-0953-8

Dulvy, N. K., Rogers, S. I., Jennings, S., Stelzenmüller, V., Dye, S. R., & 
Skjoldal, H. R. (2008). Climate change and deepening of the North 
Sea fish assemblage: a biotic indicator of warming seas. Journal of 
Applied Ecology, 45(4), 1029–1039.

Edgar, G. J., Barrett, N. S., & Morton, A. J. (2004). Biases associated with 
the use of underwater visual census techniques to quantify the den-
sity and size-structure of fish populations. Journal of Experimental 
Marine Biology and Ecology, 308(2), 269–290.

Edgar, G. J., & Stuart-Smith, R. D. (2014). Systematic global assessment 
of reef fish communities by the Reef Life Survey program. Scientific 
Data, 1(1), 1–8.

Ferrari, R., Bryson, M., Bridge, T., Hustache, J., Williams, S. B., Byrne, 
M., & Figueira, W. (2016). Quantifying the response of structural 
complexity and community composition to environmental change 
in marine communities. Global Change Biology, 22(5), 1965–1975.

Free, C. M., Thorson, J. T., Pinsky, M. L., Oken, K. L., Wiedenmann, J., 
& Jensen, O. P. (2019). Impacts of historical warming on marine 
fisheries production. Science, 363(6430), 979–983. https://doi.
org/10.1126/scien​ce.aau1758

Frisch, A. J., Cameron, D. S., Pratchett, M. S., Williamson, D. H., Williams, 
A. J., Reynolds, A. D., Hoey, A. S., Rizzari, J. R., Evans, L., Kerrigan, 
B., Muldoon, G., Welch, D. J., & Hobbs, J.-P. (2016). Key aspects of 
the biology, fisheries and management of coral grouper. Reviews in 
Fish Biology and Fisheries, 26(3), 303–325.

https://reeflifesurvey.imas.utas.edu.au/static/landing.html
https://reeflifesurvey.imas.utas.edu.au/static/landing.html
https://qfish.fisheries.qld.gov.au/
https://orcid.org/0000-0002-7271-4091
https://orcid.org/0000-0002-7271-4091
https://orcid.org/0000-0002-7369-2349
https://orcid.org/0000-0002-7369-2349
https://orcid.org/0000-0003-2860-1580
https://orcid.org/0000-0003-2860-1580
https://doi.org/10.1111/gcb.13872
https://doi.org/10.1111/faf.12314
https://doi.org/10.1111/faf.12314
https://doi.org/10.1098/rspb.2015.2828
https://doi.org/10.1098/rspb.2015.2828
https://doi.org/10.1007/s00338-015-1336-5
http://www.bom.gov.au/cyclone/tropical-cyclone-knowledge-centre/databases/
http://www.bom.gov.au/cyclone/tropical-cyclone-knowledge-centre/databases/
https://doi.org/10.32614/RJ-2018-017
https://doi.org/10.32614/RJ-2018-017
http://era.daf.qld.gov.au/id/eprint/7009/
http://era.daf.qld.gov.au/id/eprint/7009/
https://doi.org/10.1038/s41559-019-0953-8
https://doi.org/10.1126/science.aau1758
https://doi.org/10.1126/science.aau1758


1224  |    BROWN et al.

GBRMPA. (2019). Great Barrier Reef Outlook Report 2019. Great Barrier 
Reef Marine Park Authority.

Graham, N., & Nash, K. (2013). The importance of structural complexity 
in coral reef ecosystems. Coral Reefs, 32(2), 315–326. https://doi.
org/10.1007/s0033​8-012-0984-y

Graham, N. A., Wilson, S. K., Jennings, S., Polunin, N. V., Robinson, J., 
Bijoux, J. P., & Daw, T. M. (2007). Lag effects in the impacts of 
mass coral bleaching on coral reef fish, fisheries, and ecosystems. 
Conservation Biology, 21(5), 1291–1300.

Hamilton, R. J., Almany, G. R., Stevens, D., Bode, M., Pita, J., Peterson, 
N. A., & Choat, J. H. (2016). Hyperstability masks declines 
in bumphead parrotfish (Bolbometopon muricatum) popula-
tions. Coral Reefs, 35(3), 751–763. https://doi.org/10.1007/
s00338-​016-1441-0

Hempson, T. N., Graham, N. A., MacNeil, M. A., Williamson, D. H., Jones, 
G. P., & Almany, G. R. (2017). Coral reef mesopredators switch prey, 
shortening food chains, in response to habitat degradation. Ecology 
and Evolution, 7(8), 2626–2635.

Hijmans, R. J. (2020). raster: Geographic data analysis and modeling ver-
sion 3.0-12. https://CRAN.R-proje​ct.org/packa​ge=raster

Hopf, J. K., Jones, G. P., Williamson, D. H., & Connolly, S. R. (2016). 
Synergistic effects of marine reserves and harvest controls on 
the abundance and catch dynamics of a coral reef fishery. Current 
Biology, 26(12), 1543–1548.

Hopf, J. K., Jones, G. P., Williamson, D. H., & Connolly, S. R. (2019). Marine 
reserves stabilize fish populations and fisheries yields in disturbed 
coral reef systems. Ecological Applications, 29(5), e01905. https://
doi.org/10.1002/eap.1905

Hughes, T. P., Kerry, J. T., Baird, A. H., Connolly, S. R., Dietzel, A., Eakin, 
C. M., Heron, S. F., Hoey, A. S., Hoogenboom, M. O., Liu, G., 
McWilliam, M. J., Pears, R. J., Pratchett, M. S., Skirving, W. J., Stella, 
J. S., & Torda, G. (2018). Global warming transforms coral reef as-
semblages. Nature, 556(7702), 492–496.

Integrated Marine Observing System. (2014). IMOS - SRS - SST - L3C - 
NOAA 19–1 day - night time - Australia. https://catal​ogue-imos.aodn.
org.au:443/geone​twork/​srv/en/metad​ata.show?uuid=46ebc​1a9-
c503-4435-b85c-11fe1​6176c8d, https://resea​rchda​ta.edu.au/imos-​
srs-sst-time-austr​alia

Johansen, J. L., Messmer, V., Coker, D. J., Hoey, A. S., & Pratchett, M. S. 
(2014). Increasing ocean temperatures reduce activity patterns of a 
large commercially important coral reef fish. Global Change Biology, 
20(4), 1067–1074. https://doi.org/10.1111/gcb.12452

Johansen, J., Pratchett, M., Messmer, V., Coker, D. J., Tobin, A., & Hoey, 
A. (2015). Large predatory coral trout species unlikely to meet in-
creasing energetic demands in a warming ocean. Scientific Reports, 
5, 13830.

John, J. S., Russ, G. R., Brown, I. W., & Squire, L. C. (2001). The diet of the 
large coral reef serranid Plectropomus leopordus in two fishing zones 
on the Great Barrier Reef. Australia. Fishery Bulletin, 99(1), 180.

King, A. D., Karoly, D. J., & Henley, B. J. (2017). Australian climate ex-
tremes at 1.5 C and 2 C of global warming. Nature Climate Change, 
7(6), 412–416.

Lefcheck, J. S., Wilcox, D. J., Murphy, R. R., Marion, S. R., & Orth, R. J. 
(2017). Multiple stressors threaten the imperiled coastal founda-
tion species eelgrass (Zostera marina) in Chesapeake Bay, USA. 
Global Change Biology, 23(9), 3474–3483.

Leigh, G. M., Campbell, A. B., Lunow, C. P., & O'Neill, M. F. (2014). 
Stock assessment of the Queensland east coast common coral trout 
(Plectropomus leopardus) fishery. State of Queensland. http://era.
daf.qld.gov.au/id/eprin​t/7009/

Little, L., Grafton, R., Kompas, T., Smith, A., Punt, A., & Mapstone, B. 
(2011). Complementarity of no-take marine reserves and individual 
transferable catch quotas for managing the line fishery of the Great 
Barrier Reef. Conservation Biology, 25(2), 333–340.

McElreath, R. (2020). Statistical rethinking: A Bayesian course with exam-
ples in R and Stan. CRC Press.

Mellin, C., Matthews, S., Anthony, K. R. N., Brown, S. C., Caley, M. J., 
Johns, K. A., Osborne, K., Puotinen, M., Thompson, A., Wolff, N. 
H., Fordham, D. A., & MacNeil, M. A. (2019). Spatial resilience of 
the Great Barrier Reef under cumulative disturbance impacts. 
Global Change Biology, 25(7), 2431–2445. https://doi.org/10.1111/
gcb.14625

Mellin, C., Russell, B. D., Connell, S. D., Brook, B. W., & Fordham, D. A. 
(2012). Geographic range determinants of two commercially im-
portant marine molluscs. Diversity and Distributions, 18(2), 133–
146. https://doi.org/10.1111/j.1472-4642.2011.00822.x

Oliver, E. C. J., Donat, M. G., Burrows, M. T., Moore, P. J., Smale, D. 
A., Alexander, L. V., Benthuysen, J. A., Feng, M., Sen Gupta, A., 
Hobday, A. J., Holbrook, N. J., Perkins-Kirkpatrick, S. E., Scannell, H. 
A., Straub, S. C., & Wernberg, T. (2018). Longer and more frequent 
marine heatwaves over the past century. Nature Communications, 
9(1), 1–12.

Patterson, K., Pitcher, T., & Stokes, T. (1993). A stock collapse in a fluctu-
ating environment: the chub mackerel Scomber japonicus (Houttuyn) 
in the eastern central Pacific. Fisheries Research, 18(3–4), 199–218.

Pauly, D., & Zeller, D. (2016). Catch reconstructions reveal that global 
marine fisheries catches are higher than reported and declining. 
Nature Communications, 7, 10244.

Pebesma, E. (2018). Simple features for R: Standardized support for spatial 
vector data. The R Journal, 10, 439–446. https://doi.org/10.32614/​​
RJ-2018-009

Pratchett, M. S., Cameron, D. S., Donelson, J., Evans, L., Frisch, A. J., 
Hobday, A. J., Hoey, A. S., Marshall, N. A., Messmer, V., Munday, 
P. L., Pears, R., Pecl, G., Reynolds, A., Scott, M., Tobin, A., Tobin, R., 
Welch, D. J., & Williamson, D. H. (2017). Effects of climate change 
on coral grouper (Plectropomus spp.) and possible adaptation op-
tions. Reviews in Fish Biology and Fisheries, 27(2), 297–316.

Pratchett, M. S., Munday, P. L., Wilson, S. K., Graham, N. A., Cinner, 
J. E., Bellwood, D. R., & McClanahan, T. R. (2008). Effects of cli-
mate-induced coral bleaching on coral-reef fishes – Ecological and 
economic consequences. In R. N. Gibson, R. J. A. Atkinson, & J. D. 
M. Gordon (Eds.), Oceanography and marine biology (pp. 257–302). 
CRC Press.

Richardson, L. E., Graham, N. A., Pratchett, M. S., Eurich, J. G., & Hoey, 
A. S. (2018). Mass coral bleaching causes biotic homogenization of 
reef fish assemblages. Global Change Biology, 24, 3117–3129.

Robinson, J. P. W., Wilson, S. K., Robinson, J., Gerry, C., Lucas, J., Assan, 
C., Govinden, R., Jennings, S., & Graham, N. A. J. (2019). Productive 
instability of coral reef fisheries after climate-driven regime shifts. 
Nature Ecology & Evolution, 3(2), 183–190.

Rogers, A., Blanchard, J. L., & Mumby, P. J. (2018). Fisheries productivity 
under progressive coral reef degradation. Journal of Applied Ecology, 
55(3), 1041–1049.

Scott, M. E., Heupel, M. R., Simpfendorfer, C. A., Matley, J. K., & Pratchett, 
M. S. (2019). Latitudinal and seasonal variation in space use by 
a large, predatory reef fish. Plectropomus Leopardus. Functional 
Ecology, 33(4), 670–680.

Smale, D. A., Wernberg, T., Oliver, E. C. J., Thomsen, M., Harvey, B. P., 
Straub, S. C., Burrows, M. T., Alexander, L. V., Benthuysen, J. A., 
Donat, M. G., Feng, M., Hobday, A. J., Holbrook, N. J., Perkins-
Kirkpatrick, S. E., Scannell, H. A., Sen Gupta, A., Payne, B. L., & 
Moore, P. J. (2019). Marine heatwaves threaten global biodiversity 
and the provision of ecosystem services. Nature Climate Change, 
9(4), 306–312. https://doi.org/10.1038/s4155​8-019-0412-1

State of Queensland Department of Agriculture Fisheries and Forestry. 
(2020). QFish data cube. https://qfish.fishe​ries.qld.gov.au/

Stuart-Smith, R. D., Brown, C. J., Ceccarelli, D. M., & Edgar, G. J. (2018). 
Ecosystem restructuring along the Great Barrier Reef following 
mass coral bleaching. Nature, 560, 92–96.

Stuart-Smith, R. D., Edgar, G. J., & Bates, A. E. (2017). Thermal limits 
to the geographic distributions of shallow-water marine species. 
Nature Ecology & Evolution, 1(12), 1846–1852.

https://doi.org/10.1007/s00338-012-0984-y
https://doi.org/10.1007/s00338-012-0984-y
https://doi.org/10.1007/s00338-016-1441-0
https://doi.org/10.1007/s00338-016-1441-0
https://CRAN.R-project.org/package=raster
https://doi.org/10.1002/eap.1905
https://doi.org/10.1002/eap.1905
https://catalogue-imos.aodn.org.au:443/geonetwork/srv/en/metadata.show?uuid=46ebc1a9-c503-4435-b85c-11fe16176c8d
https://catalogue-imos.aodn.org.au:443/geonetwork/srv/en/metadata.show?uuid=46ebc1a9-c503-4435-b85c-11fe16176c8d
https://catalogue-imos.aodn.org.au:443/geonetwork/srv/en/metadata.show?uuid=46ebc1a9-c503-4435-b85c-11fe16176c8d
https://researchdata.edu.au/imos-srs-sst-time-australia
https://researchdata.edu.au/imos-srs-sst-time-australia
https://doi.org/10.1111/gcb.12452
http://era.daf.qld.gov.au/id/eprint/7009/
http://era.daf.qld.gov.au/id/eprint/7009/
https://doi.org/10.1111/gcb.14625
https://doi.org/10.1111/gcb.14625
https://doi.org/10.1111/j.1472-4642.2011.00822.x
https://doi.org/10.32614/RJ-2018-009
https://doi.org/10.32614/RJ-2018-009
https://doi.org/10.1038/s41558-019-0412-1
https://qfish.fisheries.qld.gov.au/


    |  1225BROWN et al.

R Core Team (2019). R: A language and environment for statistical com-
puting. https://www.R-proje​ct.org/

The State of Queensland. (2017). Fisheries (Coral Reef Fin Fish) Quota 
Amendment Declaration, Explanatory Notes for SL 2017 No. 56. www.
legis​lation.qld.gov.au

Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model eval-
uation using leave-one-out cross-validation and WAIC. Statistics 
and Computing, 27(5), 1413–1432.

Waldock, C., Stuart-Smith, R. D., Edgar, G. J., Bird, T. J., & Bates, A. E. 
(2019). The shape of abundance distributions across temperature 
gradients in reef fishes. Ecology Letters, 22(4), 685–696.

Webley, J., McInnes, K., Teixeira, D., Lawson, A., & Quinn, R. (2015). 
2013-14 statewide recreational fishing survey. State of Queensland.

Wen, C., Pratchett, M., Almany, G., & Jones, G. (2013). Patterns of recruit-
ment and microhabitat associations for three predatory coral reef 
fishes on the southern Great Barrier Reef, Australia. Coral Reefs, 
32(2), 389–398. https://doi.org/10.1007/s0033​8-012-0985-x

Wentz, F., Scott, J., Hoffman, R., Leidner, M., Atlas, R., & Ardizzone, J. (2015). 
Remote Sensing Systems Cross-Calibrated Multi-Platform (CCMP) 
6-hourly ocean vector wind analysis product on 0.25 deg grid, Version 
2.0. Remote Sensing Systems, Santa Rosa, CA. Data from 2011–2016.

Wilberg, M. J., Thorson, J. T., Linton, B. C., & Berkson, J. (2009). 
Incorporating time-varying catchability into population dynamic 
stock assessment models. Reviews in Fisheries Science, 18(1), 7–24.

Wolanski, E., Andutta, F., Deleersnijder, E., Li, Y., & Thomas, C. (2017). 
The Gulf of Carpentaria heated Torres Strait and the Northern 
Great Barrier Reef during the 2016 mass coral bleaching event. 
Estuarine, Coastal and Shelf Science, 194, 172–181.

Wolff, N. H., Mumby, P. J., Devlin, M., & Anthony, K. R. N. (2018). 
Vulnerability of the Great Barrier Reef to climate change and local 
pressures. Global Change Biology, 24(5), 1978–1991. https://doi.
org/10.1111/gcb.14043

Wood, S. N. (2017). Generalized additive models: an introduction with R. 
CRC Press.

SUPPORTING INFORMATION
Additional supporting information may be found online in the 
Supporting Information section.

How to cite this article: Brown CJ, Mellin C, Edgar GJ, 
Campbell MD, Stuart-Smith RD. Direct and indirect effects of 
heatwaves on a coral reef fishery. Glob Change Biol. 
2021;27:1214–1225. https://doi.org/10.1111/gcb.15472

https://www.R-project.org/
http://www.legislation.qld.gov.au
http://www.legislation.qld.gov.au
https://doi.org/10.1007/s00338-012-0985-x
https://doi.org/10.1111/gcb.14043
https://doi.org/10.1111/gcb.14043
https://doi.org/10.1111/gcb.15472

