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Primary productivity of marine ecosystems is largely driven by broad
gradients in environmental and ecological properties. By contrast, secondary
productivity tends to be more variable, influenced by bottom-up (resource-
driven) and top-down (predatory) processes, other environmental drivers,
and mediation by the physical structure of habitats. Here, we use a con-
tinental-scale dataset on small mobile invertebrates (epifauna), common on
surfaces in all marine ecosystems, to test influences of potential drivers
of temperature-standardized secondary production across a large biogeo-
graphic range. We found epifaunal production to be remarkably consistent
along a temperate to tropical Australian latitudinal gradient of 28.6°, span-
ning kelp forests to coral reefs (approx. 3500 km). Using a model selection
procedure, epifaunal production was primarily related to biogenic habitat
group, which explained up to 45% of total variability. Production was
otherwise invariant to predictors capturing primary productivity, the local
biomass of fishes (proxy for predation pressure), and environmental, geo-
graphical, and human impacts. Highly predictable levels of epifaunal
productivity associated with distinct habitat groups across continental
scales should allow accurate modelling of the contributions of these ubiqui-
tous invertebrates to coastal food webs, thus improving understanding
of likely changes to food web structure with ocean warming and other
anthropogenic impacts on marine ecosystems.
1. Introduction
The production and transfer of biomass among constituents of an ecosystem is
affected by a diversity of processes that differ among scales. At local scales, biotic
interactions such as competition [1], predation [2] and facilitation or ecological
complementarity (as related to local species richness [3,4]) influence productivity.
By contrast, regional patterns in productivity tend to relate to larger-scale variation
in primary producer characteristics, temperature and nutrient availability (i.e.
‘bottom-up’ processes [5]). Reconciling these varied drivers of community
productivity has long been a goal of ecologists, particularly in marine systems [6].

In this era of ‘big data’, our capacity to simultaneously evaluate a suite of
potential influences has yielded novel insights regarding productivity—a
fundamental ecosystem property [7]. Phytoplankton productivity, for example,
can now be readily assessed across large biogeographic scales using remote
sensing tools [8–10]. However, secondary productivity—particularly biomass
production at the basal consumer level, including many small heterotrophs that
funnel energy through the food web—is less easily quantified, with laborious
field assessments generally required [11,12]. For this reason, comparisons of sec-
ondary productivity across broad biogeographic scales are relatively rare, and
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generalized ecological and environmental drivers are yet to be
identified (but see [13,14]).

Reef ecosystems are among themost productive anddiverse
on earth. The productivity of reefs is often quantified in terms of
fish production [15], fisheries yield [16,17], or the primary pro-
ductivity generated by phytoplankton or benthic algae [18].
A substantial proportion of reef secondary production,
though, is generated by small mobile invertebrates (epifauna)
that inhabit the surfaces of macroalgae, coral and other benthic
structures [11,19]. Epifauna are highly abundant, diverse and
ubiquitous on shallow reefs worldwide, and represent the
main trophic link between benthic primary producers and
small carnivores [20,21]. Despite their fundamental role in
coastal food webs, the drivers of epifaunal productivity—and
thus, ‘fuel’ for most coastal food webs—have rarely been exam-
ined outside highly controlled experiments [22,23] and a few
local- to regional-scale investigations [5,13,24].

Potential drivers of epifaunal productivity can be
hypothesized based on documented patterns in other trophic
groups and ecosystems, and on relationships described in pre-
vious studies of epifauna. Many biological processes are
heavily influenced by temperature, and therefore strong latitu-
dinal patterns in productivity are often reported. For example,
in forests [25], open oceans [26], freshwater streams [14] and
seagrass beds [27], productivity is generally highest at equator-
ial latitudes and lowest towards the poles, largely as a product
of metabolic and growth rates scaling with temperature and
light [28]. Concurrent spatial variation may also suggest
unmeasured environmental factors, perhaps including evol-
utionary processes playing out over longer time frames that
favour more productive traits at low latitudes [29,30]. More-
over, epifaunal secondary productivity may not respond as
consistently as primary productivity to latitudinal temperature
gradients. Although tropical/temperate differences have been
observed [31], previous research indicates there may be no
clear pattern in epifaunal productivity across smaller gradients
or distinct locations [13,32].

Both biotic (ecological) interactions and environmental dri-
vers are fundamental determinants of food web structure and
function [33], and their relative importance has been debated
for several decades [6,34]. Local-scale biotic interactions such
as predation are clearly important in marine food webs
[2,22,35,36], and as such, variation in epifaunal productivity
has often been discussed in terms of predation pressure
[37–39]. Relationships between epifauna and various metrics
of predation pressure, however, are inconsistent [22,40]. Preda-
tion effects are further complicated by mesopredator release
[41] and the fact that functional groups in addition to obligate
invertivores, such as scraping and browsing herbivores, may
ingest and assimilate epifauna [42,43], leading to greater
trophic transfer along unexpected pathways. The relationship
between secondary productivity and biomass of potential pre-
dators may therefore vary along large-scale gradients due to
both the functional composition of predator communities
and the feeding behaviour within functional groups [44].

In concert with local-scale ecological interactions, broad-
scale environmental drivers such as changes in resource
supply can equally influence secondary productivity. This
phenomenon may play out through changes in the abundance
and composition of primary producers, which often correlate
with changes in environmental conditions, for example, light
(moderated by factors such as depth and turbidity in marine
ecosystems [13,45]) and nutrient availability [46]. Previous
studies have indicated that food resources appear to set
the ceiling on total production of epifaunal communities
after accounting for metabolic contributions, with individuals
redistributing along a size gradient to maximize community
productivity depending on whether they are exposed to
predators [22].

Local-scale environmental drivers may also affect
secondary productivity, albeit often via interactions with local
ecological processes or broad-scale environmental drivers.
More complex, stable and/or diverse habitats may support
higher faunal productivity through provision of greater abun-
dance and diversity of food resources [11,14,47,48], thus
reducing competition among secondary producers, or through
increased protection from predation [49]. Herbivorous amphi-
pods often select more finely complex algal habitat based on
the quality of predation refugia, rather than the nutritional qual-
ity of the algae [50]. In addition, while some algal species use
chemical defences against fish herbivory, epifauna may be
less sensitive to these defences, selecting better-defended algal
habitats as a refuge against consumption by omnivores or her-
bivores [51]. Local-scale physical conditions—such as wave
energy and current flow in marine systems [52,53]—and nutri-
ents [54] or pollutants [55], can all have substantial effects on
faunal community structure and function. These factors, and
others such as removal of top predators [7,56,57], are often
related to proximity and density of human populations [58],
and nearby industrial or agricultural activities [59,60].

Here, we assembled a continental-scale dataset of shallow
reef epifauna consistently surveyed along the east coast of
Australia, with the overarching aim of identifying major dri-
vers of variation in epifaunal secondary productivity across
biogeographic provinces. Using multi-model inference, we
tested six hypotheses relating to expectations from ecological
theory and prior evidence (table 1). We hypothesized that,
like primary production, the major constraints on local sec-
ondary production across large scales would be set by the
amount of resources and the abiotic environment, with
smaller roles for biotic and other factors.
2. Methods
(a) Study area and field sampling
Epifauna were sampled on shallow reefs at 11 eastern Australian
locations, from southern Tasmania (43.3° S) to Lizard Island in
the northern Great Barrier Reef (14.7° S) (figure 1). These locations
represent a range of biogeographic regions, described in electronic
supplementary material, appendix S1. A total of 132 samples of
diverse benthic microhabitats (comprising the most common bio-
genic microhabitats available on rocky and coral reefs) and
associated epifaunal invertebrates were collected via SCUBA.
Site selection, and sample collection and preservation follow
protocols described by Fraser et al. [61] and are presented in
detail in electronic supplementary material, appendix S1.

(b) Laboratory processing and description of variables
(i) Productivity estimates
Preserved invertebrates from each sample were passed through a
nested series of 13 sieves stacked in descending order of mesh
size, following a log√2 series (8, 5.6, 4.0, 2.8, 2.0, 1.4, 1.0, 0.71, 0.5,
0.355, 0.25, 0.18, 0.125 mm, after Edgar [62]). Invertebrates retained
on each sieve were washed into Petri dishes and counted under a
dissecting microscope, with data binned by sieve mesh size.
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Figure 1. Map of eastern Australia showing sampling locations, sampling
dates and number of sites. (Online version in colour.)

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

287:20201798

4

Epifaunal abundance data by size bin were standardized to
1 m2 planar seabed area (density) prior to analysis following
Fraser et al. [61]. Standardization by seabed area was considered
most appropriate for comparing epifaunal productivity to other
trophic groups such as fishes in food web models.

To calculate productivity, epifaunal biomass as ash-free dry
weight (AFDW) of individuals within each size bin was first
derived frompublishedestimatesofmeanbiomass acrossmacrofau-
nal taxonomic groups [62]. Productivity estimates were calculated
using the general allometric equation given by Edgar [62]:

P ¼ 10ðð�2:31þ0:8� log 10(B�1000)þ0:89� log 10TÞÞ

1000
,

where P is the productivity of an individual (mg AFDW d−1), B is
the biomass of an individual (mg AFDW) and T is water tempera-
ture (°C) at the time of sampling. Productivity estimates of
individual animals were then multiplied by density within each
size bin, and size bin productivity estimates summed to provide
total productivity estimates (mg AFDWm−2 d−1) for each
sample. Productivity was calculated for a standardized tempera-
ture of 20°C following Edgar [13], and hereafter referred to as
P20. The use of P20 is recommended to eliminate the effects of temp-
erature when investigating food webs, assuming that metabolic
and growth rates respond similarly to temperature change across
trophic levels [13]. We note that this method for estimating
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biomass and productivity was originally established for individ-
uals greater than or equal to 0.5 mm; here, we assume the
equations used by Edgar [62] also apply to smaller individuals
(greater than or equal to 0.125 mm) based on linear extrapolation
of well-supported trends (i.e. R2 ranging from 0.87 to 0.98 [67]).
In electronic supplementary material, appendix S1, we elaborate
on methods used for productivity estimates for samples collected
using the venturi air-lift (i.e. from massive corals and turfing
algae) and on methods used to visualize variation in epifaunal
productivity among sampling locations.

(ii) Predictor variables
Predictor variables and the models in which they are applied are
summarized in table 1, while details of predictor variables are pro-
vided in electronic supplementary material, appendix S2 and S1
presents detail on how and from where data were collected for
each predictor variable.

(c) Data analyses
Estimated epifaunal P20 per m

2 of seabed (estimated by multiply-
ing the fraction of benthic cover provided by each microhabitat
within each site by the estimated P20 associated with that micro-
habitat; electronic supplementary material, appendix S1) was
averaged within each of the 11 sampling locations to give
mean P20 (mg AFDWm−2 d−1) for each location. These data
were plotted against latitude using a linear model in R [66].

Six hypotheses were tested using multiple regression models
parameterized with the appropriate predictors (table 1) in a
multi-model inference framework [63] (see [64] for the dataset
and R code used for analysis). We fit a separate linear model to
log10 transformed P20 (per m2 of individual microhabitat
sampled) to test each hypothesis with the set of associated predic-
tor variables using the full (not summarized per location) dataset
(n = 115) (table 1). Assumptions of each model were tested using
variance inflation factors (VIF) for independence of predictors
and residuals were examined to ensure normality. We then
used Akaike information criterion with small sample correction
(AICc) to evaluate the likelihood of each model. We selected the
best-supported model based on the Akaike weight, which
describes the relative likelihood of eachmodel given the candidate
set of models. The Akaikeweight (AICwt) ranges from 0 to 1, with
0 being no support and 1 being total support [63]. The best-
supported models were further evaluated by Type-III ANOVA
using the car package [65] and Tukey post hoc comparison
of means [66]. We fit the models using R v. 3.6.3 [66] and used
the AICcmodavg package to compute Akaike weights [67].

Analyses described abovewere also conducted using tempera-
ture-dependent productivity (results presented in electronic
supplementary material, table S1). However, since modelling
temperature-dependent productivity as a function of temperature
could lead to mathematical dependence between the response and
the predictor, P20 was chosen as the preferred response variable.
3. Results
Across 28.6 degrees of latitude, we found little variation in total
epifaunal community productivity (P20; mg AFDW m−2 d−1),
at both the individual sample level and the location level
based on the contribution of different microhabitats to total
benthic cover (figure 2a). The lack of variation in productivity
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standardized by temperature (P20) with latitude indicates that
epifaunal productivity should maintain similar productivity
relativities with other food web elements (e.g. fishes, primary
producers), all equally varying with temperature as predicted
by metabolic theory.

The habitat group model was overwhelmingly the best-
supported model to explain variation in epifaunal P20 (AICwt =
0.96; table 1), suggesting that epifaunal secondary productivity
is predominantly driven by characteristics of the immediate
habitat group occupied by an assemblage (i.e. macroalgae, live
coral, sessile invertebrate or turfing algae). The microhabitat
model, which includes finer but more numerous microhabitat
categories than the habitat group model, was supported to a
much lesser degree (AICwt = 0.04), suggesting that the explana-
torypower gainedby this increased resolutionwasnotworth the
loss of additional degrees of freedom,while all other hypotheses
had no support according to their Akaike weights (table 1).

Within the habitat group model, epifaunal P20 differed
significantly among habitat groups (F-value = 19.4, p < 0.001;
figure 2b; electronic supplementary material, table S2).
Tukey pair-wise comparison of mean P20 among habitat
groups indicated significant differences between macroalgae
and live coral ( p = 0.0033), and between turfing algae and
live coral ( p = 0.010). Epifaunal P20 also showed a significant
positive correlation with branching (F-value = 6.3, p = 0.011;
figure 3a; electronic supplementary material, table S2). How-
ever, the effect of branching varied significantly among
habitat groups (F-value = 3.3, p = 0.024; electronic supplemen-
tary material, table S2), with the overall positive correlation
between branching and P20 largely driven by macroalgae
and turfing algae habitat groups (figure 3a).

Our model selection analysis suggests that the near-
constant epifaunal productivity observed on reefs along the
east coast of Australia is a product of trade-offs in the domi-
nant habitat groups across the latitudinal gradient (figure 4).
Moving from tropical to temperate latitudes, the loss of live
coral and associated secondary productivity is compensated
by increased contributions by communities of epifauna
inhabiting turfing algae and sessile invertebrate habitat
groups, while macroalgal communities remain reasonably
constant across the entire latitudinal range.
4. Discussion
Ecosystem productivity has historically been considered to
be predominantly a function of environmental drivers that
regulate the availability of resources [6,7,68]. Here, we find
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that habitat group primarily determines the degree of second-
ary productivity provided by small marine invertebrates to
shallow reef food webs. Trade-offs in the local productivity
afforded by each of four broad habitat groups (corals,
macro- and turfing algae, and sessile invertebrates) led to a
remarkably consistent trend in epifaunal secondary
productivity from temperate to tropical zones.

While community structure and function have long been
viewed through the lens of resource control, the controlling
resource has often been framed in terms of biomass and
energy transfer among trophic groups (i.e. carbon acquisition)
[7,13,69,70]. However, niche theory also acknowledges space
as an important resource (i.e. the ‘Hutchinsonian’ niche), har-
kening back to seminal contributions on the organization of
sessile organisms in rocky intertidal ecology [71,72]. Habitat
resources, additional to food resources, appear responsible for
large-scale patterns in epifaunal community structure [61,73].
This seems also to be the case in the current study with regards
to their production, echoing a recent finding in communities of
freshwater stream invertebrates in North America [14].
0201798
(a) Why is habitat so important?
Several potential mechanisms may explain our finding. First,
while epifaunal assemblages comprise a diversity of func-
tional groups, herbivores (the ‘mesograzers’) typically
dominate [13,74]. Mesograzers tend to rely on microphyto-
benthic films and filaments, with some larger animals
consuming macroalgae [75]. Macroalgal habitats present
abundant food resources in the form of microphytobenthos
and host algal tissue, potentially facilitating greater pro-
ductivity of epifauna than habitats without these resources
[35]. Filamentous turfing algae, in addition to offering a
direct food source for mesograzers, tends to host microalgal
films and capture high volumes of detritus [76], presenting
an abundance and diversity of trophic resources for different
epifaunal functional groups [75]. By contrast, live hard coral
offers minimal food for herbivorous mesograzers [77,78],
making it largely food resource-poor except for particles
trapped by coral polyps and the coral mucus consumed by
some larger decapod taxa [79]. Epifauna selecting soft coral
and sponge habitats, comprising the sessile invertebrate
habitat group, are likely to encounter fewer food resources.
Soft corals use allelopathic defences to resist colonization by
microphytobenthos and epiphytes, and consumption by
epifauna [80]. Sponge tissue is consumed by some epifauna,
however most sponge-dwellers consume external food
sources [81,82].

Variation in epifaunal productivity may also be influenced
by differential predation susceptibility among benthic habitats.
Habitat structural complexity and its role in shaping predator–
prey relationships has long been discussed [49,78,83,84], and
may be a factor determining the relationship between epifaunal
productivity and habitat groups. Epifaunal productivity
increased with our metric of habitat complexity (degree of
branching) (figure 3a), presumably due to the added protection
from predators offered by more complex habitat [84,85]. How-
ever, the degree to which this benefit is realized depends
greatly on the habitat type (figure 3a,b). For example, macroal-
gal habitat was the most highly branched and supported
among the highest estimates of epifaunal productivity; how-
ever, live coral was also highly branched but supported the
least productive epifaunal assemblages.
This apparent inconsistency raises the question of whether
physical complexity provides actual or perceived refuges for
epifaunal prey [78] and may be partly resolved by considering
the scale at which complexity is quantified. While live branch-
ing coral is complex at scales ranging from millimetres to
centimetres, the complexity of turfing algae is at a sub-milli-
metre to millimetre scale, and macroalgae complexity ranges
from sub-millimetre through to centimetres [31]. In studies
comparing macroalgae species [86] or artificial algal habitats
of differing complexity [87], small invertebrates generally
select more finely complex habitat that offers predation refugia
appropriate for the invertebrate body sizes. Macroalgae com-
plexity can also be finely partitioned by much larger
herbivorous fishes [88]. If microhabitat complexity were quan-
tified to higher resolution, for example by using fractal
dimensions [89], stronger relationships between epifaunal
productivity and habitat complexity would perhaps be evi-
dent, as would consistency between the complexity of habitat
groups and the productivity they support.

In addition to complexity, predation pressure may vary
as a result of particular characteristics of the different
habitat groups. For example, while the heterotrophy of hard
corals largely involves the consumption of zooplankton
[90,91], small epifaunal invertebrates could fall prey to coral
polyps. Hard corals also often use physical defence strategies,
such as ‘sweeper tentacles’, to resist colonization by small epi-
phytes and epifauna [92]. In addition, the rigid structure of
branching hard coral limits the ability of mobile invertivores
(e.g. fish) to penetrate the habitat in order to extract epifaunal
prey [93]. Hence, branching coral can provide refugia for
larger epifaunal invertebrates that may be less susceptible
to consumption by coral polyps [39,73].

Fish communities on tropical reefs have been shown to
comprise proportionally more herbivores compared with
temperate reefs, which support more omnivorous fishes,
while invertivores are consistently common across all lati-
tudes [94]. While total fish biomass is used here as a proxy
for predation pressure, understanding the differences in pre-
dation exposure for epifauna among different microhabitats
would require more detailed study of the functional compo-
sition and feeding behaviour of local fish communities. For
example, predation by omnivores or consumption of epi-
fauna by herbivores may vary among algal microhabitats
depending on chemical defences against fish herbivory or
the palatability of algae, as epifaunal invertebrates may be
insensitive to chemical defences [51] or choose less palatable
algal microhabitats based on refuge quality [50].

Interestingly, neither site-scale estimates ofpredatorbiomass,
nor temperature or primary productivity (assessed using water
column chlorophyll content as a proxy) appeared to be explicitly
related to variation in epifaunal productivity. Our use of P20 con-
trols for a major environmental factor, temperature, although
theory and recent studies suggest that temperature effects are
most likely to manifest through enhancing the (consumable)
resource base, rather than acting directly on community pro-
duction [14,95,96]. Metabolic rate scales with temperature at
approximatelysimilar rates across trophic levels, resulting inpro-
portionally similar production/temperature changes [13]. Given
that habitat group affects potential food resources available for
epifauna, whereas temperature had little apparent influence on
secondary productivity, our results are consistent with the
hypothesis that epifaunal productivity is limited predominantly
by food resource ceilings [13,22].
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(b) Ecological implications
Epifaunal invertebrates are extremely prolific in coastal and
shallow reef ecosystems, with a very high proportion of their
biomass consumed by larger invertebrate predators and
fishes [11]. Consequently, epifaunal communities comprise a
critical basal component in shallow marine food webs [85].
Understanding the factors that promote productive epifaunal
communities is crucial for the goal of ensuring high trophic
transfer and foodweb stability for coastal and shallow reef eco-
systems. Given that the biotic habitat group occupied by the
epifaunal assemblage was here found to explain greater than
45% of the variance in secondary productivity along an exten-
sive biogeographic gradient, understanding changes to benthic
habitat group availability is the critical first step to achieving
this goal.

In selectingmicrohabitats to sample,we attempted to include
all common types of biogenic cover found on shallow rocky and
coral reefs in eastern Australia. However, direct anthropogenic
stressors, combined with climate change, are shifting the distri-
bution and abundance of biogenic habitat groups common to
rocky and coral reefs [97–99]. Our results reveal an important
indirect pathway for the effects of global, regional and local
scale environmental changes to alter reef ecosystems. Ocean
temperature has been identified as the most important driver
of the benthic composition of biogenic habitat groups
on both rocky and coral reefs [100]. Other important drivers
include human population density, nutrient availability, wave
exposure and the density of habitat-transforming fauna such
as herbivorous sea urchins or corallivorous crown-of-thorns
sea stars [100–102]. Turf and sometimes macroalgae are suc-
ceeding corals lost to bleaching and other local stressors
[97,103,104]. Macroalgae beds on rocky reefs are declining in
many regions [105], often to be replaced by turf as oceans
warm and voracious herbivores undergo range extensions
and population outbreaks [99,106,107].
Mediated by shifts in available reef habitat groups, these
drivers can potentially affect epifaunal invertebrate commu-
nities and food web processes. Our results imply changes
to epifaunal secondary productivity should be predictable if
habitat group transformation is well documented or accu-
rately predicted. Replacement of live coral by turfing algae
or macroalgae will likely increase epifaunal secondary pro-
ductivity on tropical and subtropical reefs (figure 4). If turf
replaces macroalgae on temperate reefs, a significant increase
in epifaunal productivity may be expected, whereas the suc-
cession of subtropical macroalgae by turf is likely to result in
minimal change (figure 4). Rather, relatively high epifaunal
productivity may be maintained on subtropical reefs, as turf-
ing and macroalgae both support similarly highly productive
assemblages of epifaunal invertebrates.
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