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Abstract

Improving predictions of ecological responses to climate change requires understanding how local
abundance relates to temperature gradients, yet many factors influence local abundance in wild
populations. We evaluated the shape of thermal-abundance distributions using 98 422 abundance
estimates of 702 reef fish species worldwide. We found that curved ceilings in local abundance
related to sea temperatures for most species, where local abundance declined from realised ther-
mal ‘optima’ towards warmer and cooler environments. Although generally supporting the abun-
dant-centre hypothesis, many species also displayed asymmetrical thermal-abundance
distributions. For many tropical species, abundances did not decline at warm distribution edges
due to an unavailability of warmer environments at the equator. Habitat transitions from coral to
macroalgal dominance in subtropical zones also influenced abundance distribution shapes. By
quantifying the factors constraining species’ abundance, we provide an important empirical basis
for improving predictions of community re-structuring in a warmer world.
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INTRODUCTION

Amongst the most fundamental questions in ecology is how
an organism’s performance is affected by gradients in environ-
mental conditions. Ecological performance (e.g. fitness, demo-
graphic rates, abundance, occupancy) in geographic space is
often difficult to attribute to environmental variation because
many entangled processes act at once (Gaston 2009; Pironon
et al. 2016). Given the importance of temperature in structur-
ing life across biological scales, from biochemical reactions to
organism behaviour and species’ interactions (Dell et al.
2011), characterising the role of temperature in driving rea-
lised ecological performance is essential for predicting species’
responses to warming and environmental variability (Deutsch
et al. 2008).
Species’ abundance is expected to be greatest at the centre

of their environmental niche if performance declines outside
of particular ‘optimal’ environmental conditions (Brown et al.
1995; Pironon et al. 2016). Many explanations exist for this
‘abundant-centre’ effect, with mechanisms operating from
small to large scales (e.g. physiology, environmental auto-cor-
relation, Brown 1984; Pironon et al. 2016). However, assump-
tions underlying abundant-centre effects have been questioned
for decades, and can be violated due to various ecological and
evolutionary factors including: (1) fine-scale environmental
heterogeneity, (2) local adaptation, (3) physical barriers to

dispersal truncating geographic ranges, (4) geographic avail-
ability of niche space, (5) habitat gradients and (6) species’
interactions (Sagarin et al. 2006). Therefore, the distribution
of abundance across environmental gradients is often com-
plex, and abundance patterns have frequently been inconsis-
tent with the abundant-centre hypothesis (Sagarin & Gaines
2002b; Pironon et al. 2016; Dallas et al. 2017; Santini et al.
2018).
Moreover, it may be unrealistic to assume that species from

tropical and temperate systems – which experience markedly
different temperature regimes – will display similar abundance
structure across thermal gradients. For example, abundance
may peak closer to warm thermal distribution edges when
temperature variation is low, such as the tropics. Tropical spe-
cies investigated generally have narrow thermal safety margins
– they live nearer their thermal upper limits for physiological
and demographic rates (Angilletta et al. 2010; Morley et al.
2012). In contrast, temperate species experience higher sea-
sonal and short-term temperature variation and may have
optimal temperatures below upper limits.
Compelling ecological and physiological hypotheses predict

the shape of abundance across thermal distributions, but
defining the peaks and edges of thermal distributions presents
practical challenges. Both require high-resolution survey data
across large spatial scales (Bates et al. 2014; Knouft 2018).
Abundance data are highly variable and strongly affected by
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sampling errors and biases. Sites of similar temperatures fre-
quently differ in many other factors affecting local abundance.
Thus, the influence of temperature may not be obvious when
examining mean local abundance. Instead, a signal may be
more easily detected from upper abundance limits, given enough
data (Cade & Noon 2003; Vanderwal et al. 2009), and more
compelling tests of abundant-centre effects have been described
by modelling maximum abundance (Langlois et al. 2012;
Knouft & Anthony 2016; Martinez-Gutierrez et al. 2018).
Here, we use the Reef Life Survey (RLS) data – a standard-

ised, well replicated and globally distributed species-level cen-
sus of whole shallow reef fish communities – to overcome
data consistency and sample size issues which have been pro-
hibitive in previous analyses. First, we empirically quantify
the variation in abundance across 702 species’ thermal distri-
bution using multiple approaches – we call this the ‘thermal-
abundance distribution’. Second, we test for systematic differ-
ences in the shape of thermal-abundance distributions in fishes
from tropical vs. temperate guilds, accounting for limitations
due to habitat availability. Overall, we find abundance is con-
sistently related to temperature, with peaks in performance
indicating existence of ‘thermal optima’ for ecological perfor-
mance. The position of species’ peaks along temperature gra-
dients varies, however, resulting in skewed thermal-abundance
distributions, with a majority of species that are most success-
ful between the centre to warm-range edges.

MATERIAL AND METHODS

We evaluated the thermal-abundance distribution for individ-
ual reef fish species and quantified how many species showed
abundant-centre patterns vs. asymmetrical or ‘no-trend’
shapes (Categorical assessment of thermal-abundance distribu-
tion shape). We then standardised abundance and temperature
across all species’ geographic ranges and analysed the mean
shape of thermal-abundance distributions (Quantifying the
average shape of thermal-abundance distributions). Finally, we
modelled variation between tropical and temperate guilds in
the shape of species-specific thermal-abundance distributions
(Quantifying structure in the thermal-abundance distribution
shape). See Fig. S1 for a schematic of all analyses.

Data sources

The abundances of all fishes present along transects were
counted by trained RLS participants between 2007 and 2016
(Fig. 1) following strict data quality control (Edgar & Stuart-
Smith 2014, http://www.reeflifesurvey.com). For each species,
the abundance for non-cryptic/adult individuals (> 40% maxi-
mum body length, Froese & Pauly 2000) was summed within
individual transects, and then averaged among transects at
each RLS ‘site’ (minimum 200 m apart) providing site-level
mean densities per 500 m2. Species with < 30 abundance
records or an observed thermal range of <3°C (mean sea sur-
face temperature; see below) were deemed to have inadequate
data for the modelling approaches used here. This gave us
98 422 abundance estimates for 702 fish species at 3120 sites.
We defined species’ absences from a circular buffer with a
radius of 10° latitude/longitude around each RLS site, record-
ing zero abundance at sites surveyed at which (1) the species

was not observed, but (2) was observed elsewhere within this
buffer (Bivand & Rundel 2018). While lack of observed presence
may not be a ‘true absence’, they represent locations at which a
given species was in insufficient local abundance to have been
detected in the standardised surveys. This resulted in a total of
781 983 observations for analysis.
We matched the location of each site with sea surface tem-

perature (SST) values at a ~ 5 km2 scale (NOAA Coral Reef
Watch, 2018, see Figs S2 and S3 for comparison to additional
SST resources and metrics). We calculated 2-year mean
annual-site temperature from daily SST records. This period
covered the influence of temperature on individual survival
and recruitment processes over multiple generations, which in
turn influences population size. Covariate data were obtained
from the Marine Socio-Ecological Covariate dataset (Yeager
et al. 2017) and Bio-ORACLE v2.0 (Assis et al. 2018; see
Table S1). In addition, we estimated species-specific habitat
associations using the total % cover of macroalgae or live
coral from 20 photo quadrats from the same transects sur-
veyed for fishes. We estimated mean transect depth from mul-
tiple surveys to obtain a site average depth. Finally, thermal
guilds were defined from the peak of modelled maximum
abundance (Topt, see Categorical assessment of thermal-abun-
dance distribution shape). Species were considered ‘temperate’
when Topt < 23°C and ‘tropical’ when Topt > 23°C based on
the naturally occurring thermal guild separation previously
observed by Stuart-Smith et al. (2015, 2017).
For all species, we estimated semi-quantitative scores for

confidence in values of Topt, and the minimum and maximum
temperatures at range limits (Tmin and Tmax). Methods for
confidence scores are provided in online supporting materials
(Appendix S1) and the derivation of Topt, Tmin and Tmax is
described in sections Categorical assessment of thermal-abun-
dance distribution shape and Quantifying structure in the ther-
mal-abundance distribution shape. Sensitivity analyses with
only ‘high-confidence’ species (n = 181 species) supported our
main results.

Categorical assessment of thermal-abundance distribution shape

We used a two-stage residual analysis to model abundance
variation across each species range to handle the effects of
multiple covariates on abundance without risk of model over-
fitting – thereby also retaining a focus on the effects of tem-
perature. We first accounted for the influence of covariates,
other than temperature, using generalised linear models fitted
with a zero-inflated Poisson (ZIP) error structure. For each
species independently, we ran species-level principal compo-
nent analyses (PCA) including factors related to water chem-
istry (e.g. O2, phosphate, nitrate), oceanography and
bathymetry (e.g. current velocity), ecology (e.g. productivity,
reef area) and human pressures (e.g. human population den-
sity) amongst others (see Table S1). We used PCA because
the goal of our first-stage analysis was to account for as many
of the factors as possible that potentially affected each spe-
cies’ local abundance before we tested the effect of tempera-
ture – we did not test for the specific effect of each covariate.
PC1 was related to site temperature, and therefore it is impor-
tant to first account for these sources of covariation to
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identify the independent influence of temperature on abun-
dance. To avoid model overfitting for each species, we only
included PCA axes explaining > 10% environmental variation
experienced by species across their range. In addition to these
PCA axes derived independently for each species, we also
included several other covariates in our first-stage models: site
depth, protection status scores (Edgar et al. 2014) and sam-
pling intensity (calculated as the number of survey sites sam-
pled per degree temperature across a species’ geographic
range). Across all RLS sites, the most important sources of
environmental variation were human population density, reef
area, dissolved-O2 and productivity (see Fig. S4).
For each species we extracted the residuals from the first-

stage models, and then modelled the relationship between
temperature and residual-abundance using quantile gener-
alised additive models in the R package ‘qgam’ (Fasiolo et al.
2017). The use of generalised additive models rather than

linear models allowed a flexible fit to highly variable abundance
data. We fitted temperature as a smooth term at the 80th quan-
tile of residual-abundance, thus we modelled maximum resid-
ual-abundance without needing to estimate maximum
abundance within a temperature ‘bin’. We used k = 4 degrees
of freedom in our regression spline so models were robust to
outliers and fitted curves were constrained, to some extent, in
non-linearity. We also limited the number of absences in each
species to equal the number of abundance records. Absences
are far more frequent and could overwhelm the shape of abun-
dance distributions, the number of absences also varied by
orders of magnitude between species so our approach balanced
the number of presences vs. absences for each species. When
absences were constrained, we bootstrapped predictions by re-
running models to random absence subsets 25 times to avoid
spurious estimates of Topt that depended on which absences
were excluded. We defined the Topt of each species as the
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Figure 1 Distribution of Reef Life Survey (RLS) sites across geographic and thermal gradients. (a) Geographic distribution and intensity of RLS sampling

used in these analyses; sites across the globe are aggregated to equal area hexagons (n = 3132 sites). Points show distribution of RLS sites. (b) Sampled

thermal distributions (grey points) relative to occurrences (black points) for 50 example species, sampling often extends beyond range edges.
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temperature of peak abundance (Fig. 2). In a test of robustness,
Topt values derived from models including and excluding covari-
ates (i.e. a one-stage analysis) were highly correlated with a
slope of 1.03 � 0.01 (r2 = 0.90, Fig. S5). For each species, we
tested for the presence of spatial auto-correlation in model
residuals by comparing correlations between site pairwise dis-
tances and residual Euclidean distances using Mantel tests with

999 permutations. Correlations between these two distance
matrices were, on average, very weak (0.08 � 0.08). Thus, type-
1 errors are unlikely to be inflated due to underestimated num-
ber of degrees of freedom. Including a spatial auto-correlation
term when covariates are highly auto-correlate can lead to a
focus on local factors driving abundance, here we retain a focus
on large scale covariates (i.e., temperature) by not including a

Figure 2 Overview of modelling tools and parameters used to characterise the shape of species’ temperature-abundance distribution, including example

models from the species-specific analysis in tropical (orange) and temperate (blue) guilds. (a) Tmin and Tmax, that is, species distribution edges, were derived

from species’ geographic distributions. (b) Illustrative models conceptualising estimation of Topt which was derived from quantile generalised additive

models (qgam) fit to log10 species abundance (note that in main analysis qgam is performed on species’ residual-abundance in a 2-stage analysis). Point

sizes equate to the number of overlapping points. (c) We use these parameters to define a Tskew for 702 species represented by a split-Gaussian function

here (see methods and eqn. 1 for full details).
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spatial auto-correlation term in our final models (Diniz-Filho
et al. 2003).
From these models we defined four thermal-abundance dis-

tribution shapes, measured by the drop of abundance at the
edges of thermal distributions (Sagarin & Gaines 2002a):

(1) No-trend: neither thermal distribution edge falls to
< 75% of maximum modelled abundance,

(2) Abundant-centre: both thermal distribution edges fall to
< 75% of maximum modelled abundance,

(3) Warm-skewed: only warm thermal distribution edge does
not fall to < 75% of maximum modelled abundance,

(4) Cool-skewed: only cool thermal distribution edge does not
fall to < 75% of maximum modelled abundance,

We assessed differences in the proportion of species in each
group using a chi-squared goodness-of-fit test, and tested
whether a threshold of 50% maximum abundance influenced
our results.

Quantifying the average shape of thermal-abundance distributions

To quantify the overall shape of thermal-abundance distribu-
tions in tropical and temperate guilds, we aggregated all species
into a single thermal-abundance distribution model. Specifi-
cally, this analysis tested whether the decline above and below
Topt occurred at comparable rates, even if species thermal distri-
butions were truncated by biogeographic factors. We standard-
ised both x- and y-axes (temperature and abundance
respectively) in order to allow comparison of curve shape
among species with different absolute values of abundance and
different thermal distribution widths. We standardised the
width of the thermal distributions among species by scaling
temperatures to the mean of rTmin

and rTmax
(defined in Quanti-

fying structure in the thermal-abundance distribution shape). We
then centred this distribution by Topt to produce a distribution
of temperatures centred on 0 (Topt = 0). We standardised the
range of local abundances by the maximum abundance across a
species geographic range to constrain the absolute height of the
Topt peak between 0 and 1. We only used abundance records
(i.e. excluded absences). Within each 0.1 temperature bin we
estimated, for each species, the 99th percentile of standardised
abundance and fitted our model to these maximum abundance
values.
Next, we modelled temperature-related ecological perfor-

mance, Performance (T), directly from the relationship between
abundance and temperature (transformed as described above)
across all species, using the following split-Gaussian function:

PerformanceðTÞ ¼ c� e
�
�

T�Topt

rTmin

�2

T\Topt;

c� e
�
�

T�Topt

rTmax

�2

T[Topt

8>><
>>:

ð1Þ

where T is the temperature and c is the scaling parameter
which defines the height of the abundance peak at Topt. This
split-Gaussian function modelled abundance as a function of
temperature using separate Gaussian functions above and
below Topt, the temperature of peak abundance. The rate of
change in abundance across thermal distributions is described
by separate standard deviations above (rTmax

) and below

(rTmin
) Topt. The thermal-abundance distribution shape param-

eter Tskew was estimated as rTmax
� rTmin

from the above equa-
tion.
We estimated c, Topt, rTmin

;rTmax
and Tskew using MCMC

sampling (prior values are provided in Table S2), and fitted
models using JAGS (to provide a flexible framework to
define this split-Gaussian functional form) with the package
‘r2jags’ (Su & Yajima 2012). We fitted models with four
chains of 10 000 iterations each, a burn-in of 2500 iterations
and a thinning of 5. We visually assessed mixing and stabil-
ity of MCMC chains for all parameters, as well as confirm-
ing that the Gelman-Rubin convergence diagnostic statistic
was < 1.01 to indicate that models were fully converged. Sta-
tistical significance was inferred from assessing the 95% cred-
ible interval of parameter posterior distributions. We fitted
this model separately to temperate and tropical guilds to
obtain simple approximations of thermal-abundance distribu-
tion shapes.

Quantifying structure in the thermal-abundance distribution shape

In addition to the qualitative assessment of thermal-abun-
dance distribution shape (i.e. Categorical assessment of ther-
mal-abundance distribution shape) and an average thermal-
abundance distribution shape for each thermal guild (i.e.
Quantifying the average shape of thermal-abundance distribu-
tions), for each species we estimated a quantitative continu-
ous parameter of thermal-abundance distribution shape
(Tskew). This was based on the distance of thermal optima
(Topt defined in Categorical assessment of thermal-abundance
distribution shape) to thermal distribution edges (Tmin and
Tmax – defined below). We note this approach assumed spe-
cies thermal performance followed the shape presented in
eqn. 1, an assumption generally well supported in our data
(see Results), as well as physiological (Angilletta 2009; Dell
et al. 2011) and ecological (Boucher-Lalonde et al. 2014)
models. Here, we assumed the parameters of eqn. 1 can be
derived from abundance (Topt in Categorical assessment of
thermal-abundance distribution shape) and thermal range
edges (rTmin

and rTmax
defined below) that describe the shape

of species’ thermal-abundance distributions. The parameters
rTmin

and rTmax
were derived from Tmin and Tmax, that is, the

thermal distribution edges defined from species’ distributions
as described below. We set the scaling parameter c to 1.

Deriving Tmin and Tmax

Tmin and Tmax were estimated from the observed 2.5th and
97.5th quantiles of species thermal distributions for each spe-
cies (as in Stuart-Smith et al. 2017). We also accounted for
the influence of seasonality by defining Tmin and Tmax as the
2.5th and 97.5th quantiles of minimum and maximum tem-
peratures across species distributions during a 2-year period.
Furthermore, we accounted for the influence of additional
covariates on Tmin and Tmax (and extended species’ geo-
graphic distributions beyond sampled sites) by fitting an
ensemble of species’ distribution models (SDMs) for each
species (details in Appendix S1). We estimated the 2.5th and
97.5th quantiles of species’ predicted thermal distributions
from these models – however, our choice of methods to

© 2019 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd

Letter The thermal distribution of reef-fish abundance 689



derive Tmin and Tmax had no qualitative influence on our
results (results in Appendix S2). Here, we presented the
results for Tmin and Tmax derived from sampling limits only,
excluding the influence of seasonality (Stuart-Smith et al. 2017).
We assumed Tmin and Tmax are the 95th percentiles of a normal
distribution with a mean of Topt, and that the
z-score of this distribution was 1.96. We then defined the
thermal distribution parameters rTmin

and rTmax
, introduced in

eqn. 1, as: rTmin
¼ ðTmin � ToptÞ=1:96; and similarly for rTmax

.

Modelling thermal-abundance distribution skew
Tskew (rTmax

� rTmin
) was quantified as the imbalance of cool

and warm thermal distributions edges from Topt. We follow
the terminology of the section Categorical assessment of
thermal-abundance distribution shape. That is, where species
had Topt closer to warm thermal distribution edges (Tmax) we
called this ‘warm-skewed’ and Tskew was negative. Where spe-
cies had Topt closer to cool thermal distribution edges (Tmin)
we called this ‘cool-skewed’ and Tskew was positive. Where
species had Topt in the exact centre between Tmin and Tmax the
skew value was 0.
We estimated the slope of Tskew vs. Topt within guilds, using

linear mixed-effects models fitted in R using ‘lme4’ (Bates et al.
2015; version 1.1–17). We fitted separate models for temperate
and tropical guilds. We included Topt as a linear independent
variable. Species’ coral and macroalgae associations were also
modelled as independent variables to account for influences of
habitat preferences and the geographic patterns in habitat
availability on Tskew (Figs S8 and S10). We fitted these covari-
ates as simple additive effects with no interactions. We
included taxonomic structure as a nested random intercept of
Order, Family and Genus in all models to help account for
similarities in traits due to shared evolutionary histories within
taxonomic groups. We tested for the influence of these terms
by comparing AICc values between models. We also used
backwards-stepwise model selection, comparing between model
fits using likelihood-ratio tests. In addition to the above mod-
els, across all species we tested for the potential of non-linear
interactive effect of Topt with habitat association on Tskew using
generalised additive models, fitting this term using tensor pro-
duct smooths with the R package ‘mgcv’ (Wood 2011) and

comparing model fits using AICc values. This modelling
approach allowed Tskew to be modelled with a non-linear inter-
action between simultaneous gradients in Topt and species’
habitat associations.
Code and data for all analyses are available online (code

available at https://github.com/cwaldock1/RLS-ThermalNiche,
data available at https://doi.org/10.6084/m9.figshare.7218104),
all analysis were run using the statistical software ‘R’ version
3.4.0 (R Core Team, 2017).

RESULTS

Categorical assessment of thermal-abundance distribution shape

Temperature and maximum abundance were significantly
related for 75% of the 702 species included in our modelling.
The deviance in maximum abundance explained by tempera-
ture ranged between 14 and 63%. Thermal-abundance distri-
butions showed abundant-centre patterns for 25% of species
(Fig. 3), and on average, abundance declined by two-thirds of
maximum abundance at these species’ thermal range edges. Of
the remaining species not fitting our ‘abundant-centre’ criteria,
warm-skewed shapes were common (49%), with fewer cool-
skewed (14%) and no-trend (13%) relationships (Fig. 3;
X2 = 237, d.f. = 3, P < 0.001).
Abundant-centre trends were more apparent in widespread

species with richest data. Among the ‘high-confidence’ set of
species, there was a more even balance of species having
warm-skewed (48%) and abundant-centre (38%) thermal-
abundance distribution shapes, with the remaining species dis-
playing cool-skewed (10%) or no-trend (3%) shapes
(X2 = 100, d.f. = 3, P < 0.001). Where species are not limited
by geographic boundaries at cool-range limits (i.e. continental
margins for southern hemisphere temperate zones) or ‘niche
availability’ limits at warm-range edges (i.e. warmest tempera-
tures in oceans), 97% of species display peak maximum abun-
dances away from the edges of species’ thermal distributions
(i.e. Topt does not = Tmin or Tmax).
We also detected a difference between thermal-abundance

distribution in tropical vs. temperate guilds. The thermal dis-
tributions of tropical species were mostly warm-skewed,
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whereas temperate species were mostly cool-skewed or
abundant-centre (Fig. 3). At cool-range edges, tropical species
generally had lower relative abundance than temperate
species, but at warm-range edges temperate species had lower
relative abundances than tropical species (Fig. 3b).

Quantifying the average shape of thermal-abundance distributions

Ecological performance displayed a peak at species’ Topt in
both tropical and temperate thermal guilds (Fig. 4). However,
ecological performance varied among species within a given
temperature bin, and a low proportion of variation was
explained by a simple split-Gaussian model with temperature
as a single covariate (R2 = 0.07–0.09). When modelled as a spe-
cies aggregated mean ecological performance within tempera-
ture bins, a much higher proportion of variation in ecological
performance across species was explained by this very simple
model (R2 = 0.73–0.75). The shape of this relationship was
modelled with high confidence as indicated from narrow credi-
ble intervals for parameter estimates (Fig. 4). The overall abun-
dant-centre pattern across all species is underpinned by those
species’ which display an abundant-centre pattern, combined
with species that have warm- and cool-skewed distributions
that decline at both distribution edges (but at a similar rate, on
average, to the decline of both range edges in abundant-centre
species, see inset in Fig. 4).

The skew in ecological performance was significantly different
between guilds. Species in the tropical guild were significantly
negatively skewed (Tskew = �0.65 � 0.49), such that Topt is
closer to warm thermal distribution edges. The opposite is true
for species in the temperate guild (Tskew = 0.88 � 0.54).
Species are infrequently observed near their maximum

observed abundance, even at ‘optimal’ temperatures, as shown
by the restricted height of the thermal performance curves at
Topt. Species’ abundance at Topt was only 55–56% maximum
abundance observed across a species’ range (Fig. 4).

Quantifying structure in the thermal-abundance distribution shape

Species within thermal guilds generally shared thermal distri-
bution edges (Fig. 5a), but the positions of the peak and the
degree of skew were more variable (Fig. 5b). A slight negative
skew existed when averaged across all species (i.e. warm-skew,
median Tskew = �0.98, IQR = 2.32). Topt and Tskew were signif-
icantly negatively related (Fig. 5b). This was stronger for trop-
ical (b = �0.63 � 0.02) than temperate guilds
(b = �0.40 � 0.04; Z = �5.40, P < 0.001), thus the transition
from cool- to warm-skew occurs more rapidly along the ther-
mal gradient among tropical species. Contrasting patterns of
skew in temperate and tropical species in subtropical regions
means that species from different guilds can share a similar
Topt, despite having different thermal distribution edges (e.g.

Figure 4 Species abundance across thermal distributions for 702 reef fishes on common scales of abundance and temperature. Abundance declines with

temperature deviation from Topt, that is, towards thermal distribution edges. The x-axis represents the number of standard deviations from Topt (note the

scale on x is standardised within each species range so is not comparable to an absolute temperature value, see Methods for details). Abundance on the y-

axis is the local site abundance as proportion of each species’ maximum abundance across species’ geographic ranges. Small points are individual species’

99th quantile of relative abundance, and large points are mean values across species within a temperature bin. Main panels show Bayesian model fits, for a

split-Gaussian distribution, and 95% credible intervals. Panel insets show quantile generalised additive model fits for all 702 species. The split-Gaussian

distribution is formed of species’ displaying generally abundance-centre (AC) patterns with a relatively even number of cool skew (CS) and warm-skew

(WS) species forming the net Gaussian shape that has similar rates of change above and below Topt.
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Fig. 5c). Model fits were not improved by including taxonomic
structure as a proxy for shared evolutionary histories for tropi-
cal or temperate species. Results were also robust to inclusion
of only ‘high-confidence’ species (Table S5) and were similar
when we used Tmin and Tmax derived from species’ distribution
models or seasonal extremes (Table S4, Figs S11 and S12).
Species’ Topt and habitat associations both independently

contributed to the shape of Tskew. Within the subtropical tran-
sition zone, species that were strongly associated with coral or
macroalgae habitats were most strongly skewed, declining in
abundance in temperatures where favoured habitats become
unavailable (Fig. 6). In contrast, species weakly associated
with either habitat type retained abundance across this habitat
transition thus having less skewed thermal distributions when
optima are located in subtropical temperatures.

DISCUSSION

Species’ abundances are structured along environmental tem-
perature gradients in a pattern consistent with the abundant-
centre hypothesis. Multiple lines of evidence support this
result, first, a peak in maximum abundance occurs in most spe-
cies. Second, local maximum abundances decline towards each
thermal distribution edge at a similar rate. Third, for species
that have thermal niche edges available in geographic space
(i.e. ranges not constrained by the edges of continents or the
warmest seas) almost all show some decline in abundance at
thermal distribution edges (97%). Whilst many species display
a peak in abundance, truncation of the warm edge for tropical
species combined with the fact that there are many more tropi-
cal species, leads to a high overall frequency of species display-
ing warm-skewed realised abundance distributions (i.e. in our
categorical assessment, section Categorical assessment of ther-
mal-abundance distribution shape).
We provide arguably the most robust assessment of patterns

of abundance across an environmental gradient to date (but
see Santini et al. 2018). Our findings contrast previous studies
that largely focused on terrestrial or intertidal species (Sagarin
& Gaines 2002a; Dallas et al. 2017) by finding that species’

abundances frequently display realised niche optima, and that
abundance declines at a similar rate towards each niche edge –
we interpret this as a signal of a net abundant-centre pattern.
This contrast suggests the effect of climate on ecological per-
formance may be obscured on land by small-scale processes
and factors such as human alterations to habitat availability
(i.e. land-use change) and microclimate variability. Shallow
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distributions (blue = temperate, orange = tropical). (a) The placement of

thermal niche edges (Tmin, Tmax) relative to thermal optima (Topt) which

together define realised thermal niche shape (Tskew). Tmax and Tmin show

relative invariance across Topt within each thermal guild but Topt does

vary between species in each guild. Triangles represent upper thermal

distribution edges, circles represent lower thermal distribution edges. (b)

Shows the negative relationship between Topt and Tskew which is a

consequence of the invariance of thermal distribution edges in comparison

with variable Topt shown in (a). Coloured points in (b) represent partial

residuals of species parameter values, excluding the effects of phylogeny

and habitat association (coral and macroalgae). Fitted lines are the

predicted relationships from a generalised linear mixed-effects models

with associated 95% confidence intervals (see Table S4). Shading indicates

confidence scores for species. Large grey or white points represent the

species shown as examples in (c). (c) Extreme thermal distribution shapes

defined by split-Gaussian functions, and their associated skew, for

temperate and tropical guilds at thermal guild edges. Whilst some species

within each guild can have high ecological performance at the thermal

guild ‘barrier’ (~ 23°C) in both guilds, some species segregate strongly at

this barrier and do not occur in both guilds.
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reef fishes could be considered an ideal ‘model’ taxon, given
the relatively low thermal heterogeneity and high spatial auto-
correlation of temperature in subtidal marine systems (Steele &
Henderson 1994), leading to a reduced capacity to behaviou-
rally thermoregulate (but see Chase et al. 2018). Furthermore,
terrestrial species which strongly regulate body temperatures –
either physiologically (hibernation, endothermy) or behaviou-
rally (burrowing, seeking shade) – may be less likely to show
reduced performance at suboptimal temperatures.
Species in each thermal guild have aligned thermal distribu-

tion edges (Stuart-Smith et al. 2017). Thus, if all species dis-
played thermal-abundance distribution shapes consistent with
the abundant-centre hypothesis, we would observe a local
‘build-up’ in total community abundance at the centre of
each thermal guild (i.e. ~ 17°C and ~ 26°C). However, we
found that ecological optima were generally offset relative to
each other along the environmental temperature gradient – a
pattern we call ‘thermal complementarity’ (Fig. 5). Moving
north-to-south along coastlines within any given region, there
is turnover in the species that are living at their optimal tem-
perature for achieving maximal abundance. Environmental or
ecological mechanisms may regulate which species reach their
peak abundance along thermal gradients. The mechanisms
of this ecological temperature optimisation and segregation
require further investigation but could include physiological
adaptations to temperature; species interactions partition-
ing the thermal niche (Attrill & Power 2004; Paterson &
Blouin-Demers 2017); habitat distributions within niche
space; or recruitment biases towards particular temperatures
or latitudes.
Where thermal guilds turnover rapidly in subtropical

regions, the switch in which species are most abundant at any
particular site appears to relate to habitat, which transitions
from coral to rocky reefs at higher latitudes, but may be dom-
inated by either habitat at subtropical sites. Seasonal tempera-
tures may also prove too extreme for tropical and temperate
species living close to their cool and warm thermal limits
respectively (Figueira et al. 2009). Further work is needed to

evaluate the underlying mechanisms of thermal complemen-
tarity alongside our correlative approach. Natural experiments
in which species’ distributions change (range shifts, invasive
species or experimental exploitation), or experimental trans-
plantations (Lee-Yaw et al. 2016) provide opportunities to
study the influence of species interactions on ecological perfor-
mance, and shifts in optima, with altered community structure
(Edelist et al. 2013).
The different patterns in the skew of the thermal distribu-

tion on either side of ~ 23°C are not observed in the critical
limits for individual performance from laboratory studies
(Fig. S9). Thus, measures of performance for individuals, pop-
ulations and species may display different responses to tem-
perature, leading to mismatches in predicted responses to
temperature change across biological and ecological scales.
Always inferring biotic change from laboratory-based esti-
mates of ‘performance’ could induce systematic biases in pre-
dictions of biodiversity change in a warmer world – species
never occur in isolation, nor do constant environmental con-
ditions occur in nature. An ensemble of predictive theories
and data integration are likely needed from different fields
(Sinclair et al. 2016).
Beyond subtropical climates, abundance distributions for

tropical species were frequently warm-skewed, but temperate
species more frequently displayed cool-skewed or abundant-
centre patterns. The distributions of the warmest-affinity tropi-
cal species are truncated at their warm thermal distribution edge
by the maximum temperatures observed in the oceans. Likewise,
the geographic availability of land in southern latitudes may
also increase the higher frequency of the cool-skewed distribu-
tions in temperate species. These biogeographic factors aside,
studies of metabolic performance report that low-latitude reef
fishes show optimal temperatures near to upper thermal limits,
and can rapidly lose function with even a small increase in tem-
perature (Rummer et al. 2014). Fundamental thermal niches
indicate tropical species across multiple taxa live nearest their
upper thermal limit – that is, the ‘hotter is better’ hypothesis –
thus the patterns we observe are unlikely to result from a
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biogeographic boundary effect alone (Deutsch et al. 2008;
Angilletta et al. 2010; Morley et al. 2012). We explicitly
accounted for the possibility of truncations to thermal-abun-
dance distributions by only analysing species with absences
beyond observed range edges, and through trialling exclusion of
species with a Topt > median Topt of all tropical species, and the
results remained qualitatively unchanged (Tables S4 and S5).
The observational and coarse-scale nature of our analyses,

correlating mean temperature to ecological performance, can-
not perfectly exclude other factors influencing ecological per-
formance. For example, we overlook fine-scale variability in
the temperatures experienced by reef fishes which could yield
greater understanding of the links between small-scale temper-
ature variation and ecological performance (e.g. Payne et al.
2016). We focus on shallow-water species, but it is possible
that abundance at warm-range limits is underestimated if spe-
cies can occupy deeper and cooler reefs (Bates et al. 2014).
However, shallow and deeper (i.e. mesophotic) reefs are com-
positionally distinct systems, and so the capacity for deepen-
ing at warm-range limits may be limited (Rocha et al. 2018) –
such a pattern would still be consistent with the idea that war-
mer seas reduce species’ maximum abundance potential in
shallow-water ecosystems. In addition, we study a thermal
gradient with a correlated transition in dominance from coral
to macroalgal cover on reefs (as discussed above; Fig. S10).
Although observational analyses are unable to identify tem-
perature as a direct mechanism, our multiple regressions
determine that the partial influence of species thermal optima
on skew is statistically significant even when correlated habitat
associations are considered (Fig. 5, Tables S4 and S5).
The relationship between temperature and maximum abun-

dance suggests at least partial predictability of species-level
maximum abundance response to future temperature changes
(Booth et al. 2018), and the opportunity to predict changes in
maximum abundance across species ranges (Lenoir & Sven-
ning 2013; Martinez-Gutierrez et al. 2018). Such approaches
add to estimates of biodiversity change in response to warming
that are generally based on changes in occupancy probabilities
– changes in abundance are an important component of tem-
perature-driven biodiversity change, as well as changes in
ecosystem function and services (Waldock et al. 2018). For
example, a change in the number and proportion of individu-
als within a community comprises a key mechanism whereby
biodiversity contributes to ecosystem functions (Winfree et al.
2015), and the impact of non-native and invasive species is
tightly linked to abundance (Sofaer et al. 2018). In addition,
the yield of fisheries depends on the number of individuals in
local populations, and the success of marine management is
usefully measured by an increase in the number of individuals
contributing to community biomass (Edgar et al. 2014). Con-
sideration of species’ thermal-abundance distributions when
designating protected areas should enhance biodiversity con-
servation with climate warming by anticipating, and planning
for, species’ abundance increases and declines (rather than just
presence) inside protected areas (Fredston-Hermann et al.
2018). These examples implicate the importance of monitoring
species’ abundance and quantifying thermal-abundance distri-
bution shapes to better predict and manage shifting biodiver-
sity in a warming ocean with greater temperature extremes.
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