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Predicting diet of animals in ecological communities is necessary for a better understanding of trophic links and
piecing together food webs to inform ecosystem-based management. A dietary model, Consume, was recently
developed to predict detailed dietary information for fishes on the basis of fish identity and size. This model
was field-tested over a continental scale, predicting community-level consumption for other temperate marine
fish communities that differed in species composition and size structure. Using local stomach contents data to
field-test predictions, accurate performance of the model was found across 14 locations around southern
Australia. Prey type and mean prey size were predicted for fishes at new locations with high accuracy (mean
percentage overlap between predicted and actual prey types = 73%; r2 between predicted and observed mean
prey size = 89%) when trained with stomach contents data from subsets of sampled fishes at all locations.
Model accuracy dropped, but was still respectable, when using training data only from one location (prey type
accuracy = 67%; mean prey size r2 = 56%). Prey type was more accurately predicted on the basis of consumer
body size than species identity, while consumer family identity and size were needed for accurate prediction
ofmean prey size. Themost important factors were evaluated by leaving out predictors (species, genus and fam-
ily identity; size of consumer; habitat, location, ecoregion and biogeographic province). Exclusion of geographical
location information resulted in little loss in accuracy. Our results highlight the need for consideration of consum-
er body size in trophicmodels, rather than binning species into functional groups solely on the basis of taxonomy.
Application of Consume to situationswhere no dietary information exists, but at least fish family identity and size
structure are known, will provide a novel mechanism for testing important ecological hypotheses and assessing
trophic consequences of anthropogenically-induced changes in community structure.
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1. Introduction

Predation is an important process determining the structure of
marine communities (Russ 1980), with critical information on the
nature and magnitude of this captured in the diet of predators in the
system (Edgar and Shaw 1995a, 1995b). Fish representmajor predators
in shallowmarine systems, and the ability to predict the diet of fishes at
a given location should allow improved understanding of the ecological
dynamics of the community (Edgar and Shaw 1995b). Making predic-
tions is often necessary because dietary data do not typically exist, or
at least not for the majority of species present in a fish community.
Dietary predictions for individual animals will allow more accurate
models of community consumption and food webs with which to
answer key questions about the ecology of marine systems in relation
r), G.Edgar@utas.edu.au
ith), Tony.D.Smith@csiro.au
on).
to human impacts and management interventions, in the context of
the effects of environmental variables. Nevertheless, the challenge
with testing ecological predictions at large spatial scales is considerable
due to logistical constraints and the great spatial variability in the
natural environment (Edgar and Shaw 1995b; Peters 1991).
Community-level calculations are useful, such as when assessing
impacts of fishing and other threats on food web processes. At present,
it is near-impossible to identify community-level patterns of consump-
tion from integration of limited dietary data available for particular fish
species, given the diversity of fishes of different body sizes at any single
location, let alone across multiple locations.

A predictive diet model, Consume, was developed using dietary data
from shallow water marine fishes sampled in Western Port, Victoria
(Soler et al. 2016). Some of the findings of the study in which this
model is described included: (a) prey type and mean prey size were
accurately predicted for consumer fish of known species and size (77%
accurate for prey type and 93% for mean prey size; prey type accuracy
was calculated as the mean percentage overlap between predicted
and actual prey types, and mean prey size accuracy as the correlation
(r2) between predicted and observed mean prey size); (b) when only
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the family of the consumer, rather than the species identity, was includ-
ed, the loss in accuracy of themodels was small (~1%); (c) themost im-
portant predictor for prey type was the size of the consumer; and
(d) themost important predictor for mean prey sizewas the taxonomic
identity of the consumer.

In this study, the accuracy of the Consumemodel was tested across a
larger spatial and taxonomic domain in order to determine the
generality and broader utility of this novel means to quantify food
web links in the absence of detailed dietary information. The fish
stomach content dataset described by Edgar and Shaw (1995a, 1995b)
was used for model training and field-testing, and encompassed 14 lo-
cations in southern Australia, plus five locations in Western Port,
Victoria (Fig. 1). These locations extend over 3000 km of coast and
six marine ecoregions of the world and two provinces (Spalding et al.
2007).

The most important predictors of fish diet were tested to determine
if they could be generalized over large spatial scales, or whether impor-
tant location-specific factors and local community composition result in
idiosyncratic patterns of prey consumption which may prohibit
accurate larger-scale size-based food web modelling. To examine this,
the loss in accuracywas testedwhen predicting fish diet for the 14 loca-
tions in southern Australia using models trained only on the Western
Port dataset, and therefore naïve to locally-collected dietary data, in
comparison to model accuracy when trained with local data from a
subset of sampled fishes. Finally, the loss in accuracy was estimated
for prey type and mean prey size predictions when information on
taxonomy, consumer fish size or locality (habitat, location, province
and/or ecoregion) is lacking.
Fig. 1. Locations sampled
2. Methodology

A total of 4336 fish were sampled using seine and gill nets from 19
shallowmarine locations in southern Australia, extending fromRottnest
Island inWestern Australia to Jervis Bay in New SouthWales, including
five inWestern Port, Victoria (Fig. 1, Table 1S; Edgar and Shaw, 1995b).
For each location, fish were caught, measured, weighed, and the stom-
ach contents studied using consistent methods (see Edgar and Shaw
(1995b)). Stomach contents were identified to the lowest taxonomic
level possible, measured using a microscope graticule or Vernier calli-
pers, and binned into 19 log-scale size-classes ranging from 0.125 mm
to 64 mm (Edgar and Shaw 1995a).

For dietary predictions, the Consume model developed in R–Studio
(R-Core-Team, 2014) in a previous study (Soler et al. 2016) was used.
Consume has two steps, the first step involved predicting the percentage
of different prey types for each individual fish. For the second step, the
mean prey size was predicted for a given prey type of an individual
fish. The prediction of prey type percentage for a given fish was made
using a set of fish with known diets, that are most similar to the given
fish. This method is akin to a k-nearest neighbour procedure (Barber
2011; Conway and White 2012). The prediction of mean prey size
(step 2) was made using linear regression models, where the assump-
tions of normality were met by applying a log transformation to the
mean prey size. The importance of predictors was evaluated via cross
validation for both steps of the Consume model.

In order to estimate the effect of location in the diet predictions,
province and ecoregion (Spalding et al. 2007) were included in the
Consume model. The Western Port and southern Australia dataset was
in southern Australia.

Image of Fig. 1
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used to predict the prey type andmean prey size for fish at all locations.
To measure the accuracy of the prey type predictions, the overlap in
percentages of different dietary items between predicted and observed
values was calculated, as described by Soler et al. (2016). The correla-
tion (r2) between predicted and observed mean prey size was used as
a measure of accuracy of the model (Soler et al. 2016). Different
combinations of predictors were omitted to assess their effects on the
accuracy of the model.

The accuracy ofmeanprey size predictionswas tested as theweight-
ed correlation (r2) between the predicted mean prey size and the ob-
served mean prey size. The weighting of the correlation was based on
the diet percentage predictions. This means that each of the predicted
prey types was not given equal weight, but rather weighted the calcula-
tion by the proportion of each of the predicted prey types. If a weighted
correlation had not been used and, for example, themodel predicted 1%
prey type A and 99% prey type B but sizewas not predictedwell for prey
typeA, thiswould have resulted in a low correlation despite the fact that
prey type Awas rare. Little difference between theweighted correlation
and the non-weighted correlation was found, suggesting that the mean
prey sizewas predictedwith reasonable consistency across the different
prey types. To graph the relationship between the predicted and the ob-
served mean prey size, the locally-weighted smoothing LOWESS line
wasused. The LOWESS line allows for a curvilinear relationshipwhereas
the regression forces the curve to be linear.

For computing the accuracy of models, predictions were based on a
training dataset that excluded data from the consumer fish whose
diets were being predicted (Soler et al. 2016). In order to assess if the
model based on a localised dataset was able to predict across larger
scales, the Western Port data was used to inform predictions of prey
type and mean prey size for fishes across the 14 other locations. Results
were validated using information on observed fish diets from these
locations.

To avoid a few species with large sample sizes biasing predictions,
the same algorithm as used in Soler et al. (2016) to randomly select
12 individual fish was applied, encompassing a wide range of sizes, to
represent each species, location and habitat. Initial trials indicated that
12 individuals per species gave the maximum accuracy for prey type
and mean prey size predictions (Soler et al. 2016). Different subsets of
12 individuals per species were used as predictors for fish diet in differ-
ent runs of the model, and variability associated with the selection of
subsets was assessed.

The model used for predictions of mean prey size was (Soler et al.
2016):

yi ¼ μ þ β1 speciesi þ β2WWi þ β3 prey typei þ β4 habitati
þ β5 locationi þ β6 provincei þ β7 ecoregionþ εi

ð1Þ

where yi= the loge mean prey size prediction for the ith consumer fish,
given the effects of species, wet weight (WW), prey type, habitat, loca-
tion, province and ecoregion; μ = overall mean; εi = residual error.
Table 1
Accuracy (%) for predicted prey type of fishes at all sampled locations in southern Australia, in

Predictors

With all predictors Species, WW, habitat, loca
Without species Genus, WW, habitat, locat
Without species and genus Family, WW, habitat, locat
Without species, genus and family WW, habitat, location, pro
Without WW Species, habitat, location, p
Without habitat Species, WW, location, pro
Without location Species, WW, habitat, prov
Without ecoregion Species, WW, habitat, prov
Without province Species, WW, habitat
Without all predictors but species and WW Species, WW
Without all predictors but location Location
Without all predictors but province Province
When predicting for the southern Australian locations using only
Western Port data, the model prediction progressed sequentially from
species to genus to family, and finally to wet weight, whenever the
exact match was not found. This allowed the model to generate predic-
tions for consumerfish that lacked information on that species, genus or
family in the Western Port dataset. Furthermore, when predicting for
southern Australian locations using the Western Port dataset, the
habitat, location, ecoregion or province were not included in the
models. Habitat was excluded because southern Australian locations
included an additional habitat (Posidonia) thatwas not present inWest-
ern Port. Moreover, both ecoregion and province comprised extra levels
not present in Western Port.

From preliminary analyses (Soler et al. 2016), it was identified that
the most important predictors were taxonomy, size of the consumer
fish (wet weight) and prey type. Hence, the model used for predicting
the diet of fish for the southern Australian locations using the Western
Port data was as follows (using notation as in Eq. (1)):

yi ¼ μ þ β1 Speciesi þ β2WWi þ β3 Prey typei þ εi ð2Þ

Prey types were categorised into similar trophic and functional
groups as applied in the initial Western Port model (Soler et al. 2016)
with eleven prey types in total: algae, sponges, epifaunal crustaceans,
infaunal crustaceans, epifaunal molluscs, infaunal molluscs, epifaunal
polychaetes, infaunal polychaetes, other epifauna, other infauna, and
fishes (as prey).

In order to assess breadth in mean prey size within diets, the
standard deviation of mean prey size in guts was predicted for the 14
locations in southern Australia using the Western Port dataset, and the
same model described by Soler et al. (2016). This model also included
a progression mechanism from species to genus to family and finally
to wet weight whenever the exact taxonomic match was not found, as
described above for mean prey size predictions.

3. Results

When using the Consumemodel (Soler et al. 2016) to predict the diet
of fish at a continental scale, prey type was predicted with an accuracy
of 73± 1%, where±1% indicates the variation associated with different
sets of 12 individual fish per species randomly selected in each run of
the model. These predictions were based on the complete dataset
including Western Port and other southern Australian locations. The
accuracy in prey type predictions for southern Australia (Western Port
excluded), only dropped marginally, to 67 ± 1%, when only Western
Port data were used to train the model (and when all predictors were
used).

The loss in the accuracy in the prey type predictionswhen predictors
were sequentially dropped is presented for all locations in Table 1, and
with Western Port locations excluded in Table 2. In both cases, the
most important predictor for prey type was the wet weight of the con-
sumer fish, while taxonomic identity contributed little. When the
cluding Western Port (WW = loge wet weight of consumer fish).

Accuracy (%) with all locations included

tion, province, ecoregion 73
ion, province, ecoregion 73
ion, province, ecoregion 73
vince, ecoregion 70
rovince, ecoregion 62
vince, ecoregion 73
ince, ecoregion 72
ince 71

71
71
24
20



Table 2
Accuracy (%) for predicted prey type of fishes in southern Australian locations except
Western Port, using model trained only with Western Port data (WW= loge wet weight
of consumer fish).

Predictors Accuracy (%)

With all predictors Species, WW 67
Without species Genus, WW 67
Without species and genus Family, WW 67
Without species, genus and family WW 66
Without WW Species 40

Table 3
Correlations between observed and predicted mean prey size of fishes in southern
Australia including Western Port, and the change in accuracy when predictors are re-
moved (WW = loge wet weight of consumer fish).

Predictors r2

With all predictors Species, WW, prey type, habitat,
location, province, ecoregion

0.89

Without species Genus, WW, prey type habitat, location,
province, ecoregion

0.89

Without species and genus Family, WW, prey type habitat,
location, province, ecoregion

0.87

Without species, genus and family WW, prey type, habitat, location,
province, ecoregion

0.79

Without WW Species, prey type, habitat, location,
province, ecoregion

0.81

Without habitat Species, WW, prey type, location,
province, ecoregion

0.87

Without location Species, WW, prey type, habitat,
province, ecoregion

0.89

Without ecoregion Species, WW, prey type, habitat,
province

0.88

Without province Species, WW, prey type, habitat 0.88
Without prey type Species, WW, habitat, location,

province, ecoregion
0.86

Without all predictors but species,
WW and prey type

Species, WW, prey type 0.87

Without all predictors but species,
WW and prey type

Species, WW 0.87

Without species, genus, family
and WW

Prey type, habitat, location, province,
ecoregion

0.42

Without species, genus, family,
WW and prey type

Habitat, location, province, ecoregion 0.23

Without all predictors but location Location 0.22
Without all predictors but
province

Province 0.03
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weight of the consumer fishwas removed from themodel, the accuracy
dropped to 62± 1% (11% loss in accuracy) for the complete dataset and
to 40 ± 1% (27% loss in accuracy) using only Western Port data to train
the model. The loss in accuracy when taxonomic information was
excluded was ≤3% (Tables 1 and 2).

When the predicted prey type percentages were related to the nat-
ural log of the wet weight of the consumer fish, the most common
prey types were found to change with consumer size (Fig. 2). For this
figure (Fig. 2), the predicted prey type was estimated without the
taxonomic information. The prey types that changed the most with
consumer sizewere crustacean epifauna (ce), small fish (f), andmollusc
infauna (mi). In the small size classes, crustacean epifauna (ce) was the
preferred prey, dropping with increasing size of the consumer. Small
fish (f) prey type increased with increases in the wet weight of the
consumer, whereas mollusc infauna (mi) was a relatively important
prey type for the larger fishes (Fig. 2). Algae (a) also became a relatively
important food item for the middle-sized fishes.

The correlation (r2) between observed and predictedmean prey size
(Table 3; Fig. 3) for the complete dataset was high (r2 = 0.89 ± 0.01).
Most of the predictors included had a significant contribution in the
calculations (Table 2S). Predictions for the mean prey size (Table 4;
Fig. 4) in southern Australia using only training data from Western
Port were lower, but still respectable (r2 = 0.56 ± 0.01).

The most important predictor for the mean prey size was the
taxonomic information to at least family level; nevertheless, this was
only marginally more important than the weight of the consumer fish,
both for the whole dataset and when using only Western Port data as
the training dataset (Tables 3 and 4). Furthermore, a high correlation
was evident between thewetweight of the consumer fish and observed
mean prey size consumed (Fig. 5; r2 = 0.65 for full dataset). The
correlation between the predicted mean prey size, using all predictors
except taxonomic information, and the weight of the consumer fish,
was high (Fig. 5; r2 = 0.94). The loss in accuracy of predictions on
Fig. 2. Predicted prey type percentages in relation to loge wet weight (WW) of the
consumer fish. Predictions were based on all predictors other than taxonomic
information for the consumer fish. Prey types: algae (a), sponges (s), epifaunal
polychaetes (pe), infaunal polychaetes (pi), other epifauna (oe), infaunal mollusc (mi),
epifaunal mollusc (me), fish (f), infaunal crustaceans (ci) and epifaunal crustaceans (ce).
mean prey size and prey type was small when geographical factors
(location, ecoregion and province) were removed from the model
(Tables 1 and 3).

The correlation between the standard deviation of the natural log of
the predicted mean prey size and the wet weight of the consumer fish
shows only a slight positive relation (r2 = 0.03) (Fig. 6). The loss in
accuracy between the predicted and the observed standard deviation
(SD) of the natural log of mean prey size indicates that taxonomic
Fig. 3. Scatterplot relating predicted and observed loge mean prey size for southern
Australia including Western Port (r2 = 0.89). The solid black line is the locally-weighted
scatterplot smoothing curve (LOWESS). The dash black lines outline the upper prediction
interval and the lower prediction interval (95%); both lineswere estimated using LOWESS.

Image of Fig. 2
Image of Fig. 3


Table 4
Correlations between observed and predicted mean prey size of fishes in southern Australia
(Western Port excluded), using onlyWestern Port dataset formodel training, and the change
in accuracy when predictors are removed (WW= loge wet weight of consumer fish).

Predictors r2

With all predictors Species, WW, prey type 0.56
Without species Genus, WW, prey type 0.55
Without species and genus Family, WW, prey type 0.55
Without species, genus and family WW, prey type 0.39
Without WW Species, prey type 0.42
Without all predictors but prey type Prey type 0.11

Fig. 5. Scatterplot relating loge of observed (grey squares) and predicted (darker grey
crosses) mean prey size in mm (loge) against loge wet weight (WW) of the consumer
fish in g (loge) for all locations investigated in southern Australia, including Western
Port. The model used a random sample of 12 individuals per species with a wide range
of size. The dashed black line (r2 = 0.65) is the observed mean prey size locally-weighted
scatterplot smoothing curve (LOWESS). The black solid LOWESS line relates predicted
mean prey size (r2 = 0.94) to the size of the consumer fish (WW), with habitat, location
and ecoregion included in models but no taxonomic information.
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information is themost important predictor for SD of the prey (Table 5;
Fig. 6).

4. Discussion

Diet predictions for fishes based on taxonomy and size provide op-
portunities to better understand the ecological dynamics of fish com-
munities. A problem with many mechanistically-scaled models is that
predictions cannot be tested — predictions are needed because empiri-
cal field data are lacking (Rastetter et al. 2003). The present study is un-
usual in that it includes assessments of the accuracy of predictions for
prey type and mean prey size on the basis of observed dietary data. By
demonstrating the accuracy of the model in circumstances where little
or no dietary data are included, we have shown the utility of this tool
for ecological studies in other locations containing different sets of spe-
cies and for which no dietary data currently exists.

Diet prediction accuracy using the Consumemodel for prey type and
mean prey size declined when predictions for southern Australian loca-
tions were made only on the basis of dietary data from Western Port;
nevertheless, the correlation between predicted and observed values
remained relatively high. Furthermore, the initial findings for Western
Port were corroborated regarding the importance of taxonomy and
size of the consumer fish to accurately predict its diet. Size of the con-
sumer fish was by far the most important predictor for prey type at
the larger geographical scale. While the initial findings from Western
Port were also validated, showing that taxonomic identity was the
most important predictor for prey size, the influence of consumer size
was of near equal importance. In both prey type and prey size predic-
tions, taxonomy and body size together achieved the best predictions.
Fig. 4. Scatterplot relating predicted and observed loge mean prey size for all consumer
fish in the southern Australia locations (Western Port excluded) using training data
from Western Port (r2 = 0.56). The solid black line is the locally-weighted scatterplot
smoothing curve (LOWESS).
Body size is the most important predictor for prey type, presumably
because of the magnitude of changes in the diets of fishes through dif-
ferent life-history stages (Soler et al. 2016). Individuals of different
sizewithin a speciesmust therefore play different functional roles with-
in marine ecosystems. Other authors have previously recognised the
importance of ontogenetic changes in prey size, as well as variations
in the trophic level. For example, Cushing (1975) found that the prey
size of herring (Clupea harengus) ranged up to 4 orders of magnitude
through different life history stages. Body size also relates to the quanti-
ty of resources exploited (Werner and Gilliam 1984), and has been sug-
gested as a good measure of trophic energy flow within the fish
community, relating the size of the fish and its prey (Dickie et al.
Fig. 6. Scatterplot relating predicted standard deviation of the loge mean prey size (mm)
and the loge of the wet weight (WW) of the consumer fish (g) for all locations
investigated in southern Australia using all predictors (r2 = 0.03). LOWESS curve is
shown in solid black.

Image of Fig. 4
Image of Fig. 5
Image of Fig. 6


Table 5
Correlation between the predicted and the observed standard deviations for dietary items in all of southern Australia, Western Port included (WW= loge wet weight of consumer fish).

Predictors r2

With all predictors Species, WW, prey type, mean prey size, habitat, location, ecoregion 0.28
Without species Genus, WW, prey type, mean prey size, habitat, location, ecoregion 0.27
Without species and genus Family, WW, prey type, mean prey size, habitat, location, ecoregion 0.25
Without species, genus and family WW, prey type, habitat, mean prey size, location, ecoregion 0.13
Without WW Species, prey type, mean prey size, habitat, location, ecoregion 0.25
Without habitat Species, WW, prey type, mean prey size, location, ecoregion 0.26
Without location Species, WW, prey type, mean prey size, habitat, ecoregion 0.26
Without ecoregion Species, WW, prey type, mean prey size, habitat, location 0.25
Without habitat, location, ecoregion Species, WW, prey type, mean prey size 0.24
Without prey type Species, WW, mean prey size, habitat, location, ecoregion 0.23
Without mean prey size Species, WW, prey type, habitat, location, ecoregion 0.28
Without all predictors but location Location 0.05
Without all predictors but habitat Habitat 0.02
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1987). The length of food chains is affected by predator–prey mass ra-
tios, highlighting the importance of body size in ecological studies
(Jennings and Warr 2003).

The importance of ontogenetic dietary shifts is also well-known
from other taxa and ecosystems, including aquatic instar development
in freshwater insects like dragonflies, and further illustrates the variety
of ways in which ontogenetic changes can affect community structure
(Rudolf and Rasmussen 2013). Thresholds are often evident, where
certain prey types only become available when an animal reaches a
particular size. This has been particularly noted for carnivorous marine
fishes (Kulbicki et al. 2005). In the associated Western Port study
(Soler et al. 2016), it was found that profound changes in the predicted
prey category were directly related to the wet weight of the consumer
fish, although in that case, it was due to a shift in feeding strategy
with growth in body size, as diet categories were inclusive of the full
range of potential prey size.

As highlighted by other authors (Maury et al. 2007a; Maury et al.
2007b), themajority of trophic models inmarine ecosystems categorise
the system using species and functional groups, with the underlying
assumption that individuals within these groups are similar (Pauly
et al. 2000; Polovina 1984). By contrast, a few models have considered
animal size (e.g. biomass), with the assumption that size is the most
important factor driving the strength of interactions in the ecological
system (Brown and Gillooly 2003; Fulton et al. 2011; Shin and Cury
2001; West and Brown 2005). These models reasonably assume that
most predators are larger than their prey, determining that the
predator–prey relations are mostly based on the size of the predator
(Jennings et al. 2001; Jennings et al. 2002; Scharf et al. 2000). Further-
more, Jennings et al. (2001) showed that while body size was only a
weak predictor of trophic position within species, there was a strong
community-scale relationship between trophic position and body size
in the North Sea. The Consume model indicates that body size, rather
than taxonomy, is the most important predictor of which prey types
are being consumed by shallow water marine fishes. This predictive
diet model should therefore enable improved assessments of the
trophic compartments occupied by individuals of a species through its
lifespan.

Although taxonomic identity (at the species, genus or family level)
wasnot as important as sizewhen predicting the type of food consumed
by fish, it was critical for predicting the size of prey consumed. This was
identified in the originalWestern Port study, andwas here confirmed at
a continental scale. Previous studies have reached a similar conclusion:
that taxonomic identity was related to prey size and that, within
species, prey size was related with the size of the predatory fish
(Andersen and Beyer 2006; Juanes 1994; Law et al. 2012; Mittelbach
and Persson 1998; Scharf et al. 2000; Soler et al. 2016). In the current
study, the size of the consumer fish (i.e. wet weight) was also a good
predictor for prey size. The correlation between the predicted mean
prey size (with no taxonomic information) and wet weight of the con-
sumer fish was higher than the correlation between the observed
mean prey size and wet weight (Fig. 5). A possible explanation why
the observed size correlation is lower is that the empirical field data
are affected by a range of other factors not considered in the models,
which add noise to the relationship.

The standard deviation of sizes of items in stomach contents was
better predicted by taxonomic information than body size. This indi-
cates that certain species are feeding from a larger prey size array than
members of other species of similar size; species with relatively small
mouths, such as mullet (Mugilidae), were found to consume a smaller
range of prey sizes than those with larger mouths. In a study conducted
in the northeast USwhere the diet of 18 fish species was considered, the
maximum andminimum prey sizes, as well as the breadth of prey size,
were also found to be principally related to the taxonomic identity of
the predatory fish (Scharf et al. 2000).

Another important result from this studywas that the loss in accura-
cy of the predictions was small when using the family of the consumer
fish as the taxonomic identity, instead of the species. This has important
implications for generality of the results, suggesting that prey type and
size can be accurately predicted for other previously unassessed mem-
bers of the families included to train the model. Any available informa-
tion frompublished studies on diets of other species in the familywould
add further to the accuracy of predicted diets for unstudied species.
Clearly, diets of species are constrained by morphological rigidity at
the family level—most families are visibly recognisable because of sim-
ilar sets of particular morphological characteristics. The results suggest
there is an equivalent degree of rigidity in diet amongst species. Excep-
tions clearly exist, however, particularly amongst very large families
such aswrasses and gobies,where greatmorphological diversity occurs.
A study of New Caledonian marine fishes reported significant intra-
family variation in diets (in Lethrinidae), as well as prey consumption
similarities within other families (Kulbicki et al. 2005).

Geographical location was found to contribute only marginally to
diet predictions for both prey type and prey size — consumer fishes of
a particular family and body size had similar diets regardless of location.
Considering the patchiness in the availability of each particular food
type across the marine domain, a number of possible mechanisms
could contribute to this result. It is possible that local representatives
of each family associate with particular sets of conditions or microhab-
itats that contain similar mixes of potential prey types, regardless of
location. Diet type categories used in this study were relatively broad,
and are more likely to occur across multiple regions than had prey
type been more finely partitioned, but they will still occur in varying
proportions at different locations. It may also be that fishes selectively
remove particular prey items, regardless of density in the seascape,
and such selectivity has an element of consistency within families.
While further work is needed to determine this, the results of this
studymost likely reflect a combination of these and other mechanisms.

In conclusion, the Consumemodel generated accurate predictions of
prey type and prey size for consumer fishes at a continental scale. The
model was sufficiently robust to predict across a geographical domain
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using training data from a single location, although accuracy substan-
tially improved, particularly for prey size, when broader-scale training
data were utilised. The most essential predictors for the diet estimates
were the size of the consumer fish followed by family identity, albeit
these elements contributed differently when predicting prey type ver-
sus prey size. Community-level estimates using this dietary model,
where diet predictions based on body size and family identity are aggre-
gated for all individuals at a location, should provide a novel perspective
to food web studies, and can capitalise on more readily available
community-structure data.
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