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ABSTRACT

Aim The redistribution of species with climate change is well documented.

Even so, the relative contribution of species detectability to the variation in

measured range shift rates among species is poorly understood. How can true

range shifts be discerned from sampling artefacts?

Location Australia.

Methods We simulate range shifts for species which differ in their abundance

for comparison to patterns derived from empirical range shift data from two

regional-scale (100s km) empirical studies. We demonstrate the use of spatial

occupancy data in a distance-to-edge (DTE) model to assess changes in geo-

graphical range edges of fish species within a temperate reef fish community.

Results Simulations identified how sampling design can produce relatively lar-

ger error in range shift estimates in less abundant species, patterns that corre-

spond with those observed in real data. Application of the DTE model allowed

us to estimate the location of the true range edge with high accuracy in com-

mon species. In addition, upper confidence bounds for range edge estimates

identified species with range edges that have likely shifted in location.

Conclusions Simulation and modelling approaches used to quantify the level of

confidence that can be placed in observed range shifts are particularly valuable

for studies of marine species, where observations are typically few and patchy.

Given the observed variability in range shift estimates, the inclusion of confi-

dence bounds on estimates of geographical range edges will advance our capac-

ity to disentangle true distributional change from artefacts of sampling design.

Keywords

Climate warming, extreme value statistics, range edge estimation, sampling

methodology.

INTRODUCTION

Species are tracking environmental warming by moving

towards the poles through range extensions at the leading

(poleward) range boundary and range contractions at the

trailing (equatorward) range boundary (Chen et al., 2011;

Sunday et al., 2012; Poloczanska et al., 2013). Yet even in

areas experiencing rapid temperature change, the magnitude

of observed biological responses differs among species (Ang-

ert et al., 2011; Pinsky et al., 2013; Poloczanska et al., 2013).

While some variation can presumably be attributed to differ-

ences among species in their responsiveness to temperature,

the magnitude and spatio-temporal distribution of sampling

effort also has the potential to generate inaccurate range shift

estimates. This is a particular problem for species unlikely to

be observed due to low population numbers, patchy occu-

pancy patterns or cryptic characteristics (Dorazio & Royle,

2005; Shoo et al., 2006; Blanchard et al., 2008; Hassall &

Thompson, 2010; McCarthy et al., 2013). Even when entire

assemblages of species are systematically surveyed with the
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same effort, error in observed range shifts can be expected

due to the occupancy patterns and traits of different species.

Difficulties in measuring species distribution patterns are

well known and have been acknowledged in the context of

range shifts (reviewed in Tingley & Beissinger, 2009). In par-

ticular, the middle of species distribution ranges can be esti-

mated with greater accuracy than range edges, especially for

rarer species (Shoo et al., 2006; Hassall & Thompson, 2010;

Pinsky et al., 2013). Yet range edges may be of particular

interest (Sexton et al., 2009); for example, range extension

into new regions and contraction from previously occupied

areas lead to species gains and losses that have the potential

to change community dynamics (reviewed in Bates et al.,

2014). The processes that drive range extensions at the lead-

ing edge and contractions at the trailing edge also differ, so

mechanistic understanding requires information specific to

each edge type (Bates et al., 2014). At the limit of species

geographical ranges, local densities are typically lowest, and

therefore, detectability, the capacity to detect a species when

it is present, is also expected to decline (McCarthy et al.,

2013). It is therefore important to understand the type and

quantity of error in estimates of range edges.

However, while biases due to variable species detectability

have been acknowledged when interpreting observed range

shift patterns, biases are generally not accounted for using

statistical methods (Tingley & Beissinger, 2009; Brown et al.,

2011; Tanadini & Schmidt, 2011; Monk, 2013). For instance,

Hassall & Thompson (2010) have suggested that the posi-

tion of the range edge can be estimated by fitting the

gamma frequency distribution to latitudinal occurrence data,

rather than the most extreme or averaged observed location

of the range edge (e.g. mean of the 10 most extreme range

records, as in Hickling et al., 2005; Thomas & Lennon,

1999). Alternatively, to increase the probability that observed

range edge shifts represent true distributional change, Jones

et al. (2010) suggest considering only shifts that are greater

than a threshold distance, set for example by the upper 95th

percentile of the distances among survey sites. However,

both of these examples assume that all species are equally

likely to be detected if present and do not provide a means

for evaluating the level of confidence that can be placed in

a particular range edge observation (Wintle et al., 2013).

While quantifying species detectability using distance sam-

pling and employing occupancy modelling techniques would

allow for statistical characterization of the range edge, to

our knowledge, this technique has only been attempted

for butterflies (Isaac et al., 2011), a model taxonomic group

for understanding climate-driven range shifts (Parmesan

et al., 1999).

Evaluation of range shifts in the ocean, for pragmatic rea-

sons, has generally ignored species detectability, indirectly

assuming uniformly high detectability across species, despite

the fact that detectability can vary markedly among similar

species even when under rigorous sampling protocols (e.g.

within reef fish assemblages, MacNeill et al., 2008). This is

likely because approaches for quantifying species detectability

require a level of replication that is often costly in marine

environments, especially at regional scales.

Here, we first assess the extent to which sampling variabil-

ity contributes to error in estimates of species range shifts

for species with varying abundances. We use simulations to

establish patterns in range shift estimates that relate to the

probability of occupancy and sampling design. We illustrate

the use of simulations to understand community-level pat-

terns by providing two examples that demonstrate evidence

of detection-related biases and variability in range shift esti-

mates, as predicted by our simulations.

Second, we explore a new method for quantifying uncer-

tainty in range edge estimates. We apply a time-to-extinction

model, an optimal linear estimator tool (Solow, 2005), using

spatial occurrence data for fishes with a known geographical

range edge. Time-to-extinction models are based on the tim-

ing of observations leading up to the last sighting, and are

commonly used in contexts related to palaeontology and

conservation biology for declining processes which can be

modelled with a Weibull distribution (as described in Rob-

erts & Solow, 2003 and Solow, 2005). In the same way that

the last sighting of an individual from a near-extinct species

is unlikely to represent the very last individual of a popula-

tion (except where the entire population is known), the most

extreme location at which a species is observed is unlikely to

represent its true range edge (although there may be excep-

tions, such as where known habitat barriers exist). Exchang-

ing space for time therefore allows us to estimate the true

location of the range edge and quantify the upper confidence

bound for this estimate. We test the accuracy of this applica-

tion using real data and introduce the term ‘distance-

to-edge’ model (DTE).

METHODS

In the marine realm, species abundance is one of the more

important determinants of both site occupancy (proportion

of sites in which a species is present) and detectability (prob-

ability of detecting a species if it is present in a site; McCar-

thy et al., 2013). Abundance is also a convenient descriptor

that varies by orders of magnitude within and between spe-

cies, and can be assessed categorically (i.e. rare versus com-

mon) which means that bias or error related to abundance

can be evaluated for diverse data. Our simulations character-

ize variation in leading and trailing range edge estimates due

to abundance-related sampling error. However, any other

process that would lead to a reduced probability of observing

a species near the edge of its distribution, as described above,

would result in similar patterns.

Simulations

As range edges were of interest, we simulated the tails of the

species abundance distributions. While one or more peaks in

abundance can be expected across the range of a species

(McGill & Collins, 2003), the shape and number of peaks in
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the middle of a species range are irrelevant to the present

analysis. We therefore simulated abundance distributions

with a single peak and tails in which abundance was lower

than in the peaks (McGill & Collins, 2003).

For simulations of sampling across a species latitudinal

range, we created location-specific probabilities for observing

a species given that it is present. To do so, we used

R Development Core Team (2011) to first define a standard

Gaussian function (although different distributions were

tested and produced similar patterns) centred at an arbitrary

latitude (+10°) and with a standard deviation of 2° latitude

(increasing the standard deviation increases tail length). We

multiplied the standard Gaussian function by abundance val-

ues of 1 to 500 with a step size of 0.01. This produced, for

each level of abundance, a distributional curve representing a

probability of occupancy (Fig. 1). Observed presence or

absence of a species at each sampled position along this gra-

dient could then be modelled as a Bernoulli trial, with the

probability of successfully observing a species defined by the

corresponding probability of occupancy specific to each sam-

pling position. Those species occurring with an abundance of

50 or greater at any sampling position were assigned a prob-

ability of occupancy of 1. Within the distribution for each

simulated species (which we defined as the centre of the

Gaussian distribution with the tail length defined by the 2.5

and 97.5 quantiles), we set the minimum observation proba-

bility of 0.001 (Appendix S1 in Supporting Information).

The probability of occupancy outside the simulated distribu-

tion was 0.

We designed two different scenarios (Appendix S1 pro-

vides our R code) where range change was simulated 1000

times for each abundance level. In the first scenario, charac-

terization of a species latitudinal distribution was achieved

by simulating a stratified sampling design with equivalent

effort in time. Fifty positions (sampling effort = 50) were

sampled at odd intervals from 1 to 99 to represent a spatial

gradient. We repeated the same design twice with no under-

lying change in distribution, to simulate stability in the range

edge location between two sampling time periods. In the sec-

ond scenario, we displaced the entire distribution for each

abundance level by one degree of latitude polewards (Fig. 1).

In this second scenario, we manipulated sampling effort in

two ways to reflect known biases in a macroalgal data set

(Wernberg et al., 2011, described below). First, we randomly

excluded up to 10 sampling positions to achieve uneven

effort among simulations and across the spatial gradient. Sec-

ond, we introduced a historical sampling bias. To do so, we

biased overall effort by an average of 2 samples by randomly

adding �1 to 3 for pre-shift (historical) sampling and �3 to

1 for the post-shift (present) sampling for each simulation.

Taken together, total effort for the pre-shift and post-shift

sampling ranged from, respectively, 39–53 and 37–51.

In each range change simulation, the leading edge (for

comparison to the fish data set, see below) and trailing edge

(for comparison to the macroalgal data set, see below) were

recorded, respectively, as the most extreme equatorward and

poleward latitudes in which observations were recorded.

Simulated range change was quantified as the difference in

the pre-shift and post-shift range edge estimates returned for

each simulation (Appendix S1).

Comparison of simulated and observed community

scenarios

We compared our simulation results with two data sets to

determine whether the abundance-related patterns identified

in our simulations were present at the community level in

the marine environment. Our objective was to ascertain the

utility of simulated range shift data for understanding what

errors and biases may be present in real data sets.

The first data set was limited to southeast Australia (Tas-

mania) and comprised range shift responses in shallow reef

fishes near their poleward geographical limit. Community

data were collected using standardized protocols for under-

water visual census methods in which local abundances were

recorded for each species (Stuart-Smith et al., 2010). Sam-

pling effort was even in 1994 and 2006, spanned from

�43.58°S to �39.21°S (n = 108 sites) (Stuart-Smith et al.,

2010). The relationship between the measured difference in

leading range edge (measured as the most poleward latitude

at which each species was recorded) in the two sampling

intervals and their mean abundance was determined for 66

fish species.

The second data set comprised 45 seaweed species from

the southwest Australian coastline where shifts in the trailing

range edge were of interest (Wernberg et al., 2011). Latitudi-

nal displacement was determined from ~1950 (pre-shift) to

~2000 (post-shift) on the basis of opportunistic collections

in herbaria where sampling effort was episodic and varied

among species (Wernberg et al., 2011). As this data set did

Figure 1 Schematic diagram of a theoretical relationship

between probability of occupancy and latitude at two time

periods (historical = hatched, present = filled) for a species

under three abundance levels (high: dark grey, medium: grey,

low: light) across absolute latitude (to represent both the

northern and Southern Hemispheres). A ‘peak-and-tail’ pattern

is expected if range limits are set by environmental conditions

(although this may include multiple peaks). More abundant

species have a higher probability of occupancy and are more

likely to be observed during sampling. The leading (poleward,

high latitude) and trailing (equatorward, low latitude) range

edges are predicted to shift towards the poles (black arrow) with

increasing climate warming. This leads to an extension (positive

shift in latitude or gain) at the leading edge and contraction

(negative shift in latitude or loss) at the trailing boundary.
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not contain information on the abundance of the species, we

asked experts to score each species on a qualitative scale of 1

to 5 with respect to their expected relative abundance across

the region (see Appendix S2 in Supporting Information:

pooled into low (1–2.5) and high (> 2.5) categories for pre-

sentation). Based on our simulation results, we expected that

abundant species would be over-represented in the pool of

species with adequate data to quantify a change in the range

edge location (simply because species with a lower probabil-

ity of occupancy are missed in surveys). We further tested

for the influence of abundance on the magnitude of range

shifts measured in macroalgae. We used a generalized linear

model (link function = log) and included sampling effort

(total sample size) and temporal sampling bias (log ratio of

effort between the two sampling periods) as covariates. Sam-

pling effort and bias are reported in Wernberg et al. (2011)

and are known to influence range edge detection (Shoo

et al., 2006).

Distance-to-edge (DTE) model of confidence in range

edges

To provide an option for evaluating confidence in range edge

change estimates, we explore the utility of an optimal linear

estimator approach for estimating confidence in range edges

that is dependent only on the shape of the tail of the range

distribution. Based on the observation that the tails of many

probability distributions generally match a Weibull distribu-

tion, we first assume that the same applies to the tails of spe-

cies ranges. A similar assumption is made in the time-to-

extinction models described in full in Solow (2005) and

made accessible as the R package “sExtinct” in Clements,

2012. Briefly, the time-to-extinction models use an optimal

linear endpoint estimate based on the spacing of the H last

sightings on record. Here we interpose spatial for temporal

measures, to create what we call a distance-to-edge (DTE)

model.

Rivadeneira et al. (2009) used simulations to evaluate sev-

eral time-to-extinction models and found that the ‘R&S’

model, which does not assume even distribution of sampling

effort (Roberts & Solow, 2003), was most conservative. Thus,

we chose the R&S model to fit the last H observations of a

species range (where H ranged from 4 to 9, depending on

the total number of samples available) to a Weibull distribu-

tion (Roberts & Solow, 2003) to estimate the true range edge

and 95% confidence intervals around that edge. In fitting

this model, we also assume that occupancy is a linear func-

tion of habitat variables that change across space and that

detectability (not occupancy) is uniform.

While other sources have described the temporal model,

we provide an interpretation of the DTE model terms based

on the equations presented in Solow (2005). First, let the

S1, . . . ,Sn represent the locations of observations of a partic-

ular species along a spatial gradient. The estimated distance

from a species last observed location to its true range edge

(SE) is given by:

SE ¼
XH
i¼1

wiSn�iþ1

where Sn is the most distant observation (for example the

southernmost range observation). Thus, the sequence,

Sn-H+1,. . .,Sn, represents the H most distant sightings, with H

usually chosen to be between 4 and 9 (Rivadeneira et al.,

2009; Clements, 2012). We do not need to know n, but

assume that it is large. Vector w is used to weight the influ-

ence of the H observations according to how they are spaced,

and is derived from the following:

w ¼ ðk0K�1kÞ�1K�1

where K is a symmetric H by H matrix and k is a vector of

H ones, and the notation k’ indicates the transpose of matrix

k. The elements of K are given by:

Ki;j ¼ Cð2v̂ þ iÞCðv̂ þ jÞ
Cðv̂ þ iÞCðjÞ ; j� i

where Γ is the standard Gamma function and v̂ is an esti-

mate of the shape parameter of the Weibull distribution,

against which are fitted the last H sightings,

v̂ ¼ 1

H � 1

XH�2

i¼1

log
Sn � Sn �H þ 1

Sn � Siþ1

The upper 95% confidence interval of a species range edge

is given by:

SCiU ¼ Sn þ Sn � Sn �H þ 1

1� cða=2Þ

where (a)is the significance level (here set to be 0.05 to allow

for 95% confidence intervals) and the function

cða=2Þ ¼ �logða=2Þ
H

� ��v̂

scales the confidence intervals according to how many obser-

vations are used.

Because we are interested in comparing change in the

location of range edges between two time periods, we also

need the lower 95% confidence interval for the estimated

range edge, which is given by substituting c(1-a/2) for c(a/2)
in the equation for SCiU

SCiL ¼ Sn þ Sn � Sn �H þ 1

1� cð1� a=2Þ

Calculating the lower bounds for range edges allows us to

define a range shift as occurring with high confidence if the 95%

confidence intervals for the two time periods do not overlap.

To parameterize the DTE model, occupancy was estimated

as the number of sites in which a species was observed

within 0.1° of latitude across Tasmania, quantified for 28

species that occurred in both sampling years and were
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present in at least four locations in each year. The reef fish

data set offers the benefit of having a known geographical

range limit for shallow marine species at the southern end of

Australia (the continental margin).

RESULTS

Simulated range shifts

When simulations did not include a latitudinal displacement

in the location of the range edge and sampling was evenly

distributed across space and time, simulated estimates of

change in the location of the range edges were markedly

more variable in rare versus abundant species (Fig. 2a).

Greater variability in estimates of range change for rarer spe-

cies means that a greater proportion of false shifts (range

extensions and contractions) are observed if a method such

as defining a shift as being greater or less than arbitrary

value, such as was used here (� 0.45° of latitude), is selected
(Fig. 2a).

Greater variability in estimates of range change at leading

edges was also observed in the data set of reef fish abun-

dance, where other sources of variability could conceivably

swamp variation due to abundance-related sampling error.

The magnitude and direction of range change spanned from

4 to �4° latitude for species with a peak mean abundance of

less than three individuals per site, while estimates for species

that were more abundant converged on zero. This finding

supports the hypothesis that assessments for less abundant

species are inaccurate and that large range shifts in both

directions will be observed in species that are less abundant

due to sampling variability alone (Fig. 2). In fact, observed

range changes in the fish data set fell within the 5th and

95th quartiles of simulated range change estimates (Fig. 2b).

When we modelled the sampling process with uneven

effort among simulations and with greater historical effort,

we observed greater overall variability in range change esti-

mates (compare Fig. 2a to Fig. 3a). As we displaced the lati-

tudinal distribution by 1° polewards, we calculated, for each

level of abundance, the proportion of true range shifts

detected (number of range change estimates with an absolute

value of > 0.45° divided by the number of range change esti-

mates returned of 1000 simulations). Under our simulation

parameters (Appendix S1), we found that the proportion of

true range shifts detected increased with abundance

(Fig. 3b). Similarly, in the macroalgal data set, contractions

at the trailing range edge > 0.45° were also less evident in

species with relatively low abundance (Fig. 3b). However, the

magnitude of range contractions was not significantly related

to qualitative abundance (generalized linear model P > 0.1

Table 1) when methodological covariates that influence

detection of true range shifts were included in the model

(overall sampling effort and change in sampling effort

between the two sampling time intervals).

Our simulations further revealed that a larger proportion

of rarer species go unobserved in surveys due to the stochas-

tic nature of the sampling (Fig. 3c). For instance, in 1000

simulations of range edge locations in two time periods for a

species with a mean abundance of one, observations in both

sampling intervals were detected in only 73 simulations. Sim-

ilarly, in the macroalgal range shift data set, the proportion

of species scored with low abundance was 0.2 (Fig. 3c)

Distance-to-edge (DTE) model of confidence in range

edges

In applying the DTE model to the reef fish data, confidence

intervals of leading range edge estimates from 2006 and 1994

substantially overlapped for most species (Fig. 4a). There was

thus little evidence for change in the leading range limits of

the Australian fishes observed during the study period, with

the exception of three species. A range edge extension

(south) in one species (Enoplosus armatus) and contractions

(north) in two species (Atypichthys strigatus and Upeneichthys

vlamingii) were supported by non-overlapping confidence

intervals. For those species observed at only a few sites (i.e.

presence at 3 to 5 sites in each of the two years), the location

of estimated range edges was farther south of the last

observed presence and the confidence limits were wider in

comparison with species with higher occupancy (compare

(a)

(b)

Figure 2 Relationship between abundance, change in latitude

and proportion false range extensions detected. (a) 5th and 95th

quartiles (orange, left y-axis) of simulated estimates of change in

the location of leading range edges (sampling effort and species

distributions were held constant) for mean peak abundances of

1 to 500 steps of 0.01. Proportion of false range shifts (red line,

right y-axis) > 0.45° (dotted black lines) in either the positive or

negative direction of 1000 simulations at each abundance step.

(b) Observed change in the latitude of the leading range edge

for 66 fishes from Tasmania (blue, left y-axis). Results from the

simulations in panel a are shown (grey bars and red line) for

direct comparison to the field data.
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Fig. 4b and d). By contrast, for species observed more fre-

quently, the range edge estimates were closer to the last

observed location and confidence intervals were narrower, so

that we could place higher confidence that a northward

range shift occurred in Upeneichthys vlamingii (Fig. 4c).

Overall, the DTE model performed well for common

species that occurred throughout Tasmania in predicting the

range edge at a location close to the true geographical range

limit (edge of the continent) with precise confidence limits

(Fig. 4d). However, the geographical ranges of some species

would likely extend further southwards than the edge of

Tasmania if habitat was available.

DISCUSSION

While the issue of variability in detection among species is

well known in ecological studies (e.g. Tanadini & Schmidt,

2011), we show here how abundance-related species detect-

ability has the potential to confound our understanding of

the true location of range edges. Failure to account for non-

detection leads to inaccurate and inconsistent assessment of

range shifts among species. Using simulations, we demon-

strate how the probability of occupancy and variation in

sampling effort influence accuracy when identifying range

shifts, emphasizing the importance of long-term monitoring

with even sampling effort through time. We further suggest

the application of a distance-to-edge (DTE) model to esti-

mate confidence in range edge locations when species distri-

butional limits are of interest. Tools such as simulations and

modelling confidence intervals will allow more realistic

descriptions of range changes for individual species and

entire communities, leading to better understanding of the

environmental and ecological factors underpinning range

shift dynamics.

Simulations of range edges provide a baseline expectation

for the detection of range shifts in species found in varying

abundance for comparison to field data and subsequently

assist in interpretation of patterns. As expected, estimates of

range shifts are more accurate for more abundant species

(Shoo et al., 2006; Tanadini & Schmidt, 2011).

While sampling issues associated with detectability (not

just those related to abundance) are a well-known problem,

the large spatial and temporal scale required to obtain accu-

rate range edge locations presents particular challenges in

marine systems (Monk, 2013). Simulations indicate that even

under a best case scenario of high-resolution sampling, esti-

mates of range edge locations are highly variable for less

abundant species, patterns that are also observed in regional-

scale empirical data sets. This issue is likely to be more acute

for marine than terrestrial systems due to the sampling effort

limitations imposed by logistics of collecting data underwater.

Therefore, while solutions such as subsampling data to equal-

ize sampling effort between time periods have been advised

on the basis of terrestrial studies (Hill et al., 2002; Hassall &

Thompson, 2010), such solutions may be counterproductive

for marine studies, where sample sizes can be much lower

and maximizing information is important. Moreover, sub-

sampling techniques only exacerbate the fact that rarer species

are going undetected or, if measured, are more likely to have

inaccurate estimates of change in comparison with more

abundant species. These results suggest that the available

baseline data in marine systems are insufficient to estimate

range movements of rare and inconspicuous species due to

quality (e.g. museum collections: Przeslawski et al., 2012) or

limited sampling resolution (e.g. spatial positioning of samples

may not capture range changes).

(a)

(b)

(c)

Figure 3 Relationship between abundance, the proportion of

range shifts at trailing range edges and species detected. (a) 5th

and 95th quartiles of simulated estimates of change in the

location of trailing range edges (positive values are equatorward

extensions, negative values are poleward contractions) for mean

peak abundances of 1 to 500 at 0.1 steps. A range shift of 1° of
latitude was modelled (grey line), and sampling effort was varied

among simulations with a historical sampling bias in effort. (b)

The proportion of simulated trailing range edge shifts (orange,

left y-axis) showing a polewards contraction of 0.45° (equivalent
to values < �0.45° as shown by the bottom dotted black line in

panel a) versus abundance. The proportion of macroalgal species

(blue, right y-axis) scored as having low or high abundance

showing trailing range edge contractions with absolute values of

> 0.45°. (c) Proportion of 1000 simulations with observations in

both sampling intervals (orange, left y-axis) and proportion of

species sampled in herbarium records (blue, right y-axis) versus

abundance.
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The signatures of sampling error related to species abun-

dance and sampling effort, both of which influence species

detectability, are therefore present in published data sets of

marine range shifts. While our simulations support that the

Tasmanian reef fish community displayed stable range edges

(Stuart-Smith et al., 2010) and that the southern Australian

macroalgal community shifted polewards (given that histori-

cal sampling effort was greater in this study, Wernberg et al.,

2011), attributing confidence in the observed species-specific

responses in range edges was not possible at the time of the

original studies (nor was this the aim of these studies, e.g.

Wernberg et al., 2014).

Our DTE model now provides a tool to estimate confi-

dence in species-specific responses that incorporates informa-

tion on the number of sites where species were observed and

the spatial distribution of occupied sites. For species with

higher occupancy, the model estimated the range edge loca-

tion (i.e. the edge of the Australian continent) with high pre-

cision. However, at lower occupancy and when the records

of species were less even in space, precision in the range edge

position was low, as expected. Thus, confidence intervals

allowed us to consider which observed shifts most likely rep-

resented real change. We were therefore able to identify spe-

cies in which the confidence intervals for the two sampled

time periods did not overlap and thus support for a range

shift with > 95% confidence. Overall, the range edge esti-

mates between the two time periods were generally similar

for most species, further supporting the original interpreta-

tion of stability in the range edges of reef fish communities.

We therefore suggest that further evaluation of additional

time-to-extinction models with data that have different sam-

pling resolutions and spatial distribution patterns will be

important. Including habitat variables (such as using species

distribution modelling approaches) in conjunction with

(a)

(b) (c) (d)

Figure 4 (a) Leading range edges

(symbols) and 95% confidence intervals

(bars) predicted with a distance-to-edge

model for 28 fish species sampled in

both 1994 and 2006. Species are ranked

by increasing occupancy (i.e. the total

number of sites occupied by a species in

both time intervals). The majority of the

2006 range edge estimates fell within the

95% confidence interval (CI) of the 1994

estimate; however, in three species, range

shifts were supported by non-overlapping

confidence intervals (filled symbols).

Letters indicate example species

highlighted in panels b-d. The grey-

shaded area represents the latitudes of

southern Australia, and the edge of the

grey area is the southern limit of shallow

marine habitat on the continent. (b–d)
The raw data (number of sites occupied

for each 0.1 degrees of latitude) are

displayed for comparison with the

modelled leading range edge estimates

and 95% CIs for 1994 and 2006 (offset

to the right of each panel) for three

example species.

Table 1 Generalized linear model results for relationships

between measured change in the latitudinal location of the range

edge in macroalgae versus abundance and sample size. Negative

values indicate a declining slope

Coefficient

Standard

error t-value P-value

Intercept �0.51 0.90 �0.57 0.57

Abundance

category

�0.40 0.26 �1.51 0.11

Sample size 0.065 0.024 2.70 0.010

Log(effort ratio) �1.61 0.69 �2.35 0.024
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range edge estimates based on spatial occupancy patterns has

the potential to build more accurate estimates of where spe-

cies are located. In addition, trait-based time-to-detection

models, such as described by Garrard et al. (2012), may be

applicable to a spatial setting.

If we are to improve our ability to model and predict both

current and future range extensions and contractions, variable

detectability of species needs to be considered in analyses and

monitoring efforts (Monk, 2013). Although quantifying confi-

dence in the accuracy of range edge estimates is a step for-

ward, the most fundamental issue is that baseline data are

either lacking or were not collected at a spatial and temporal

resolution designed for rarer species (Maxwell & Simon,

2005). Statistical tools may help to account for the patchy

nature of present and historical data and inherent variation

in species detectability, such as hidden-Markov or Bayesian

hierarchical models (Wintle et al., 2013;). However, monitor-

ing programmes designed to detect future range shifts should

be implemented now with the goal of detecting changes in

species distributions for species with different detectability, in

combination with robust quantitative approaches tailored for

climate change ecology (Brown et al., 2011). Well-designed

surveys will provide baseline data for comparison to the pres-

ent, facilitating systematic assessments, so that range shifts in

rarer species are not going unnoticed.

CONCLUSION

The capacity to discern true range shifts from those that are

simply due to sampling variability will advance our under-

standing of the mechanisms driving species redistribution. In

particular, the lack of data in marine systems means that we

need to cautiously apply sampling and statistical approaches

developed in terrestrial systems where data sources tend to

be richer. However, simulations with simple assumptions can

assist in generating baseline expectations for the detection of

range shifts and show where incorrect range shift estimates

can be expected under different sampling scenarios. The

application of tools to estimate confidence in observed shifts

also has the potential to indicate range shifts that are most

likely to represent real change. Such application will not cor-

rect for underestimates in the frequency of range shifts in

rare and inconspicuous species due to missed observations;

however, such approaches will assist in the appropriate inter-

pretation of observed range shifts.
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